//===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines specializations of GraphTraits that allow Function and // BasicBlock graphs to be treated as proper graphs for generic algorithms. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CFG_H #define LLVM_SUPPORT_CFG_H #include "llvm/ADT/GraphTraits.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" namespace llvm { //===----------------------------------------------------------------------===// // BasicBlock pred_iterator definition //===----------------------------------------------------------------------===// template // Predecessor Iterator class PredIterator : public std::iterator { typedef std::iterator super; typedef PredIterator Self; USE_iterator It; inline void advancePastNonTerminators() { // Loop to ignore non terminator uses (for example BlockAddresses). while (!It.atEnd() && !isa(*It)) ++It; } public: typedef typename super::pointer pointer; typedef typename super::reference reference; PredIterator() {} explicit inline PredIterator(Ptr *bb) : It(bb->use_begin()) { advancePastNonTerminators(); } inline PredIterator(Ptr *bb, bool) : It(bb->use_end()) {} inline bool operator==(const Self& x) const { return It == x.It; } inline bool operator!=(const Self& x) const { return !operator==(x); } inline reference operator*() const { assert(!It.atEnd() && "pred_iterator out of range!"); return cast(*It)->getParent(); } inline pointer *operator->() const { return &operator*(); } inline Self& operator++() { // Preincrement assert(!It.atEnd() && "pred_iterator out of range!"); ++It; advancePastNonTerminators(); return *this; } inline Self operator++(int) { // Postincrement Self tmp = *this; ++*this; return tmp; } /// getOperandNo - Return the operand number in the predecessor's /// terminator of the successor. unsigned getOperandNo() const { return It.getOperandNo(); } /// getUse - Return the operand Use in the predecessor's terminator /// of the successor. Use &getUse() const { return It.getUse(); } }; typedef PredIterator pred_iterator; typedef PredIterator const_pred_iterator; inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); } inline const_pred_iterator pred_begin(const BasicBlock *BB) { return const_pred_iterator(BB); } inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);} inline const_pred_iterator pred_end(const BasicBlock *BB) { return const_pred_iterator(BB, true); } //===----------------------------------------------------------------------===// // BasicBlock succ_iterator definition //===----------------------------------------------------------------------===// template // Successor Iterator class SuccIterator : public std::iterator { const Term_ Term; unsigned idx; typedef std::iterator super; typedef SuccIterator Self; inline bool index_is_valid(int idx) { return idx >= 0 && (unsigned) idx < Term->getNumSuccessors(); } public: typedef typename super::pointer pointer; typedef typename super::reference reference; // TODO: This can be random access iterator, only operator[] missing. explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator } inline SuccIterator(Term_ T, bool) // end iterator : Term(T) { if (Term) idx = Term->getNumSuccessors(); else // Term == NULL happens, if a basic block is not fully constructed and // consequently getTerminator() returns NULL. In this case we construct a // SuccIterator which describes a basic block that has zero successors. // Defining SuccIterator for incomplete and malformed CFGs is especially // useful for debugging. idx = 0; } inline const Self &operator=(const Self &I) { assert(Term == I.Term &&"Cannot assign iterators to two different blocks!"); idx = I.idx; return *this; } /// getSuccessorIndex - This is used to interface between code that wants to /// operate on terminator instructions directly. unsigned getSuccessorIndex() const { return idx; } inline bool operator==(const Self& x) const { return idx == x.idx; } inline bool operator!=(const Self& x) const { return !operator==(x); } inline reference operator*() const { return Term->getSuccessor(idx); } inline pointer operator->() const { return operator*(); } inline Self& operator++() { ++idx; return *this; } // Preincrement inline Self operator++(int) { // Postincrement Self tmp = *this; ++*this; return tmp; } inline Self& operator--() { --idx; return *this; } // Predecrement inline Self operator--(int) { // Postdecrement Self tmp = *this; --*this; return tmp; } inline bool operator<(const Self& x) const { assert(Term == x.Term && "Cannot compare iterators of different blocks!"); return idx < x.idx; } inline bool operator<=(const Self& x) const { assert(Term == x.Term && "Cannot compare iterators of different blocks!"); return idx <= x.idx; } inline bool operator>=(const Self& x) const { assert(Term == x.Term && "Cannot compare iterators of different blocks!"); return idx >= x.idx; } inline bool operator>(const Self& x) const { assert(Term == x.Term && "Cannot compare iterators of different blocks!"); return idx > x.idx; } inline Self& operator+=(int Right) { unsigned new_idx = idx + Right; assert(index_is_valid(new_idx) && "Iterator index out of bound"); idx = new_idx; return *this; } inline Self operator+(int Right) { Self tmp = *this; tmp += Right; return tmp; } inline Self& operator-=(int Right) { return operator+=(-Right); } inline Self operator-(int Right) { return operator+(-Right); } inline int operator-(const Self& x) { assert(Term == x.Term && "Cannot work on iterators of different blocks!"); int distance = idx - x.idx; return distance; } // This works for read access, however write access is difficult as changes // to Term are only possible with Term->setSuccessor(idx). Pointers that can // be modified are not available. // // inline pointer operator[](int offset) { // Self tmp = *this; // tmp += offset; // return tmp.operator*(); // } /// Get the source BB of this iterator. inline BB_ *getSource() { assert(Term && "Source not available, if basic block was malformed"); return Term->getParent(); } }; typedef SuccIterator succ_iterator; typedef SuccIterator succ_const_iterator; inline succ_iterator succ_begin(BasicBlock *BB) { return succ_iterator(BB->getTerminator()); } inline succ_const_iterator succ_begin(const BasicBlock *BB) { return succ_const_iterator(BB->getTerminator()); } inline succ_iterator succ_end(BasicBlock *BB) { return succ_iterator(BB->getTerminator(), true); } inline succ_const_iterator succ_end(const BasicBlock *BB) { return succ_const_iterator(BB->getTerminator(), true); } template struct isPodLike > { static const bool value = isPodLike::value; }; //===--------------------------------------------------------------------===// // GraphTraits specializations for basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... template <> struct GraphTraits { typedef BasicBlock NodeType; typedef succ_iterator ChildIteratorType; static NodeType *getEntryNode(BasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return succ_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return succ_end(N); } }; template <> struct GraphTraits { typedef const BasicBlock NodeType; typedef succ_const_iterator ChildIteratorType; static NodeType *getEntryNode(const BasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return succ_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return succ_end(N); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits > { typedef BasicBlock NodeType; typedef pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return pred_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return pred_end(N); } }; template <> struct GraphTraits > { typedef const BasicBlock NodeType; typedef const_pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return pred_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return pred_end(N); } }; //===--------------------------------------------------------------------===// // GraphTraits specializations for function basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... these are the same as the basic block iterators, // except that the root node is implicitly the first node of the function. // template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef Function::iterator nodes_iterator; static nodes_iterator nodes_begin(Function *F) { return F->begin(); } static nodes_iterator nodes_end (Function *F) { return F->end(); } static unsigned size (Function *F) { return F->size(); } }; template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();} // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef Function::const_iterator nodes_iterator; static nodes_iterator nodes_begin(const Function *F) { return F->begin(); } static nodes_iterator nodes_end (const Function *F) { return F->end(); } static unsigned size (const Function *F) { return F->size(); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits > : public GraphTraits > { static NodeType *getEntryNode(Inverse G) { return &G.Graph->getEntryBlock(); } }; template <> struct GraphTraits > : public GraphTraits > { static NodeType *getEntryNode(Inverse G) { return &G.Graph->getEntryBlock(); } }; } // End llvm namespace #endif