//===-- llvm/Support/Casting.h - Allow flexible, checked, casts -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the isa(), cast(), dyn_cast(), cast_or_null(), // and dyn_cast_or_null() templates. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CASTING_H #define LLVM_SUPPORT_CASTING_H #include "llvm/Support/type_traits.h" #include namespace llvm { //===----------------------------------------------------------------------===// // isa Support Templates //===----------------------------------------------------------------------===// // Define a template that can be specialized by smart pointers to reflect the // fact that they are automatically dereferenced, and are not involved with the // template selection process... the default implementation is a noop. // template struct simplify_type { typedef From SimpleType; // The real type this represents... // An accessor to get the real value... static SimpleType &getSimplifiedValue(From &Val) { return Val; } }; template struct simplify_type { typedef typename simplify_type::SimpleType NonConstSimpleType; typedef typename add_const_past_pointer::type SimpleType; typedef typename add_lvalue_reference_if_not_pointer::type RetType; static RetType getSimplifiedValue(const From& Val) { return simplify_type::getSimplifiedValue(const_cast(Val)); } }; // The core of the implementation of isa is here; To and From should be // the names of classes. This template can be specialized to customize the // implementation of isa<> without rewriting it from scratch. template struct isa_impl { static inline bool doit(const From &Val) { return To::classof(&Val); } }; /// \brief Always allow upcasts, and perform no dynamic check for them. template struct isa_impl >::type > { static inline bool doit(const From &) { return true; } }; template struct isa_impl_cl { static inline bool doit(const From &Val) { return isa_impl::doit(Val); } }; template struct isa_impl_cl { static inline bool doit(const From &Val) { return isa_impl::doit(Val); } }; template struct isa_impl_cl { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl::doit(*Val); } }; template struct isa_impl_cl { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl::doit(*Val); } }; template struct isa_impl_cl { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl::doit(*Val); } }; template struct isa_impl_cl { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl::doit(*Val); } }; template struct isa_impl_wrap { // When From != SimplifiedType, we can simplify the type some more by using // the simplify_type template. static bool doit(const From &Val) { return isa_impl_wrap::SimpleType>::doit( simplify_type::getSimplifiedValue(Val)); } }; template struct isa_impl_wrap { // When From == SimpleType, we are as simple as we are going to get. static bool doit(const FromTy &Val) { return isa_impl_cl::doit(Val); } }; // isa - Return true if the parameter to the template is an instance of the // template type argument. Used like this: // // if (isa(myVal)) { ... } // template inline bool isa(const Y &Val) { return isa_impl_wrap::SimpleType>::doit(Val); } //===----------------------------------------------------------------------===// // cast Support Templates //===----------------------------------------------------------------------===// template struct cast_retty; // Calculate what type the 'cast' function should return, based on a requested // type of To and a source type of From. template struct cast_retty_impl { typedef To& ret_type; // Normal case, return Ty& }; template struct cast_retty_impl { typedef const To &ret_type; // Normal case, return Ty& }; template struct cast_retty_impl { typedef To* ret_type; // Pointer arg case, return Ty* }; template struct cast_retty_impl { typedef const To* ret_type; // Constant pointer arg case, return const Ty* }; template struct cast_retty_impl { typedef const To* ret_type; // Constant pointer arg case, return const Ty* }; template struct cast_retty_wrap { // When the simplified type and the from type are not the same, use the type // simplifier to reduce the type, then reuse cast_retty_impl to get the // resultant type. typedef typename cast_retty::ret_type ret_type; }; template struct cast_retty_wrap { // When the simplified type is equal to the from type, use it directly. typedef typename cast_retty_impl::ret_type ret_type; }; template struct cast_retty { typedef typename cast_retty_wrap::SimpleType>::ret_type ret_type; }; // Ensure the non-simple values are converted using the simplify_type template // that may be specialized by smart pointers... // template struct cast_convert_val { // This is not a simple type, use the template to simplify it... static typename cast_retty::ret_type doit(From &Val) { return cast_convert_val::SimpleType>::doit( simplify_type::getSimplifiedValue(Val)); } }; template struct cast_convert_val { // This _is_ a simple type, just cast it. static typename cast_retty::ret_type doit(const FromTy &Val) { typename cast_retty::ret_type Res2 = (typename cast_retty::ret_type)const_cast(Val); return Res2; } }; template struct is_simple_type { static const bool value = is_same::SimpleType>::value; }; // cast - Return the argument parameter cast to the specified type. This // casting operator asserts that the type is correct, so it does not return null // on failure. It does not allow a null argument (use cast_or_null for that). // It is typically used like this: // // cast(myVal)->getParent() // template inline typename enable_if_c::value, typename cast_retty::ret_type>::type cast(const Y &Val) { assert(isa(Val) && "cast() argument of incompatible type!"); return cast_convert_val< X, const Y, typename simplify_type::SimpleType>::doit(Val); } template inline typename cast_retty::ret_type cast(Y &Val) { assert(isa(Val) && "cast() argument of incompatible type!"); return cast_convert_val::SimpleType>::doit(Val); } template inline typename cast_retty::ret_type cast(Y *Val) { assert(isa(Val) && "cast() argument of incompatible type!"); return cast_convert_val::SimpleType>::doit(Val); } // cast_or_null - Functionally identical to cast, except that a null value is // accepted. // template inline typename cast_retty::ret_type cast_or_null(Y *Val) { if (Val == 0) return 0; assert(isa(Val) && "cast_or_null() argument of incompatible type!"); return cast(Val); } // dyn_cast - Return the argument parameter cast to the specified type. This // casting operator returns null if the argument is of the wrong type, so it can // be used to test for a type as well as cast if successful. This should be // used in the context of an if statement like this: // // if (const Instruction *I = dyn_cast(myVal)) { ... } // template inline typename enable_if_c::value, typename cast_retty::ret_type>::type dyn_cast(const Y &Val) { return isa(Val) ? cast(Val) : 0; } template inline typename cast_retty::ret_type dyn_cast(Y &Val) { return isa(Val) ? cast(Val) : 0; } template inline typename cast_retty::ret_type dyn_cast(Y *Val) { return isa(Val) ? cast(Val) : 0; } // dyn_cast_or_null - Functionally identical to dyn_cast, except that a null // value is accepted. // template inline typename cast_retty::ret_type dyn_cast_or_null(Y *Val) { return (Val && isa(Val)) ? cast(Val) : 0; } } // End llvm namespace #endif