//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes an abstract interface used to get information about a // target machines register file. This information is used for a variety of // purposed, especially register allocation. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETREGISTERINFO_H #define LLVM_TARGET_TARGETREGISTERINFO_H #include "llvm/ADT/ArrayRef.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/CallingConv.h" #include "llvm/MC/MCRegisterInfo.h" #include #include namespace llvm { class BitVector; class MachineFunction; class RegScavenger; template class SmallVectorImpl; class VirtRegMap; class raw_ostream; class TargetRegisterClass { public: typedef const MCPhysReg* iterator; typedef const MCPhysReg* const_iterator; typedef const MVT::SimpleValueType* vt_iterator; typedef const TargetRegisterClass* const * sc_iterator; // Instance variables filled by tablegen, do not use! const MCRegisterClass *MC; const vt_iterator VTs; const uint32_t *SubClassMask; const uint16_t *SuperRegIndices; const sc_iterator SuperClasses; ArrayRef (*OrderFunc)(const MachineFunction&); /// getID() - Return the register class ID number. /// unsigned getID() const { return MC->getID(); } /// getName() - Return the register class name for debugging. /// const char *getName() const { return MC->getName(); } /// begin/end - Return all of the registers in this class. /// iterator begin() const { return MC->begin(); } iterator end() const { return MC->end(); } /// getNumRegs - Return the number of registers in this class. /// unsigned getNumRegs() const { return MC->getNumRegs(); } /// getRegister - Return the specified register in the class. /// unsigned getRegister(unsigned i) const { return MC->getRegister(i); } /// contains - Return true if the specified register is included in this /// register class. This does not include virtual registers. bool contains(unsigned Reg) const { return MC->contains(Reg); } /// contains - Return true if both registers are in this class. bool contains(unsigned Reg1, unsigned Reg2) const { return MC->contains(Reg1, Reg2); } /// getSize - Return the size of the register in bytes, which is also the size /// of a stack slot allocated to hold a spilled copy of this register. unsigned getSize() const { return MC->getSize(); } /// getAlignment - Return the minimum required alignment for a register of /// this class. unsigned getAlignment() const { return MC->getAlignment(); } /// getCopyCost - Return the cost of copying a value between two registers in /// this class. A negative number means the register class is very expensive /// to copy e.g. status flag register classes. int getCopyCost() const { return MC->getCopyCost(); } /// isAllocatable - Return true if this register class may be used to create /// virtual registers. bool isAllocatable() const { return MC->isAllocatable(); } /// hasType - return true if this TargetRegisterClass has the ValueType vt. /// bool hasType(EVT vt) const { for(int i = 0; VTs[i] != MVT::Other; ++i) if (EVT(VTs[i]) == vt) return true; return false; } /// vt_begin / vt_end - Loop over all of the value types that can be /// represented by values in this register class. vt_iterator vt_begin() const { return VTs; } vt_iterator vt_end() const { vt_iterator I = VTs; while (*I != MVT::Other) ++I; return I; } /// hasSubClass - return true if the specified TargetRegisterClass /// is a proper sub-class of this TargetRegisterClass. bool hasSubClass(const TargetRegisterClass *RC) const { return RC != this && hasSubClassEq(RC); } /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this /// class. bool hasSubClassEq(const TargetRegisterClass *RC) const { unsigned ID = RC->getID(); return (SubClassMask[ID / 32] >> (ID % 32)) & 1; } /// hasSuperClass - return true if the specified TargetRegisterClass is a /// proper super-class of this TargetRegisterClass. bool hasSuperClass(const TargetRegisterClass *RC) const { return RC->hasSubClass(this); } /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this /// class. bool hasSuperClassEq(const TargetRegisterClass *RC) const { return RC->hasSubClassEq(this); } /// getSubClassMask - Returns a bit vector of subclasses, including this one. /// The vector is indexed by class IDs, see hasSubClassEq() above for how to /// use it. const uint32_t *getSubClassMask() const { return SubClassMask; } /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices /// that project some super-register class into this register class. The list /// has an entry for each Idx such that: /// /// There exists SuperRC where: /// For all Reg in SuperRC: /// this->contains(Reg:Idx) /// const uint16_t *getSuperRegIndices() const { return SuperRegIndices; } /// getSuperClasses - Returns a NULL terminated list of super-classes. The /// classes are ordered by ID which is also a topological ordering from large /// to small classes. The list does NOT include the current class. sc_iterator getSuperClasses() const { return SuperClasses; } /// isASubClass - return true if this TargetRegisterClass is a subset /// class of at least one other TargetRegisterClass. bool isASubClass() const { return SuperClasses[0] != 0; } /// getRawAllocationOrder - Returns the preferred order for allocating /// registers from this register class in MF. The raw order comes directly /// from the .td file and may include reserved registers that are not /// allocatable. Register allocators should also make sure to allocate /// callee-saved registers only after all the volatiles are used. The /// RegisterClassInfo class provides filtered allocation orders with /// callee-saved registers moved to the end. /// /// The MachineFunction argument can be used to tune the allocatable /// registers based on the characteristics of the function, subtarget, or /// other criteria. /// /// By default, this method returns all registers in the class. /// ArrayRef getRawAllocationOrder(const MachineFunction &MF) const { return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); } }; /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about /// registers. These are used by codegen, not by MC. struct TargetRegisterInfoDesc { unsigned CostPerUse; // Extra cost of instructions using register. bool inAllocatableClass; // Register belongs to an allocatable regclass. }; /// Each TargetRegisterClass has a per register weight, and weight /// limit which must be less than the limits of its pressure sets. struct RegClassWeight { unsigned RegWeight; unsigned WeightLimit; }; /// TargetRegisterInfo base class - We assume that the target defines a static /// array of TargetRegisterDesc objects that represent all of the machine /// registers that the target has. As such, we simply have to track a pointer /// to this array so that we can turn register number into a register /// descriptor. /// class TargetRegisterInfo : public MCRegisterInfo { public: typedef const TargetRegisterClass * const * regclass_iterator; private: const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen const char *const *SubRegIndexNames; // Names of subreg indexes. // Pointer to array of lane masks, one per sub-reg index. const unsigned *SubRegIndexLaneMasks; regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses protected: TargetRegisterInfo(const TargetRegisterInfoDesc *ID, regclass_iterator RegClassBegin, regclass_iterator RegClassEnd, const char *const *SRINames, const unsigned *SRILaneMasks); virtual ~TargetRegisterInfo(); public: // Register numbers can represent physical registers, virtual registers, and // sometimes stack slots. The unsigned values are divided into these ranges: // // 0 Not a register, can be used as a sentinel. // [1;2^30) Physical registers assigned by TableGen. // [2^30;2^31) Stack slots. (Rarely used.) // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. // // Further sentinels can be allocated from the small negative integers. // DenseMapInfo uses -1u and -2u. /// isStackSlot - Sometimes it is useful the be able to store a non-negative /// frame index in a variable that normally holds a register. isStackSlot() /// returns true if Reg is in the range used for stack slots. /// /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack /// slots, so if a variable may contains a stack slot, always check /// isStackSlot() first. /// static bool isStackSlot(unsigned Reg) { return int(Reg) >= (1 << 30); } /// stackSlot2Index - Compute the frame index from a register value /// representing a stack slot. static int stackSlot2Index(unsigned Reg) { assert(isStackSlot(Reg) && "Not a stack slot"); return int(Reg - (1u << 30)); } /// index2StackSlot - Convert a non-negative frame index to a stack slot /// register value. static unsigned index2StackSlot(int FI) { assert(FI >= 0 && "Cannot hold a negative frame index."); return FI + (1u << 30); } /// isPhysicalRegister - Return true if the specified register number is in /// the physical register namespace. static bool isPhysicalRegister(unsigned Reg) { assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); return int(Reg) > 0; } /// isVirtualRegister - Return true if the specified register number is in /// the virtual register namespace. static bool isVirtualRegister(unsigned Reg) { assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); return int(Reg) < 0; } /// virtReg2Index - Convert a virtual register number to a 0-based index. /// The first virtual register in a function will get the index 0. static unsigned virtReg2Index(unsigned Reg) { assert(isVirtualRegister(Reg) && "Not a virtual register"); return Reg & ~(1u << 31); } /// index2VirtReg - Convert a 0-based index to a virtual register number. /// This is the inverse operation of VirtReg2IndexFunctor below. static unsigned index2VirtReg(unsigned Index) { return Index | (1u << 31); } /// getMinimalPhysRegClass - Returns the Register Class of a physical /// register of the given type, picking the most sub register class of /// the right type that contains this physreg. const TargetRegisterClass * getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const; /// getAllocatableClass - Return the maximal subclass of the given register /// class that is alloctable, or NULL. const TargetRegisterClass * getAllocatableClass(const TargetRegisterClass *RC) const; /// getAllocatableSet - Returns a bitset indexed by register number /// indicating if a register is allocatable or not. If a register class is /// specified, returns the subset for the class. BitVector getAllocatableSet(const MachineFunction &MF, const TargetRegisterClass *RC = NULL) const; /// getCostPerUse - Return the additional cost of using this register instead /// of other registers in its class. unsigned getCostPerUse(unsigned RegNo) const { return InfoDesc[RegNo].CostPerUse; } /// isInAllocatableClass - Return true if the register is in the allocation /// of any register class. bool isInAllocatableClass(unsigned RegNo) const { return InfoDesc[RegNo].inAllocatableClass; } /// getSubRegIndexName - Return the human-readable symbolic target-specific /// name for the specified SubRegIndex. const char *getSubRegIndexName(unsigned SubIdx) const { assert(SubIdx && SubIdx < getNumSubRegIndices() && "This is not a subregister index"); return SubRegIndexNames[SubIdx-1]; } /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a /// register that are covered by SubIdx. /// /// Lane masks for sub-register indices are similar to register units for /// physical registers. The individual bits in a lane mask can't be assigned /// any specific meaning. They can be used to check if two sub-register /// indices overlap. /// /// If the target has a register such that: /// /// getSubReg(Reg, A) overlaps getSubReg(Reg, B) /// /// then: /// /// getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0 /// /// The converse is not necessarily true. If two lane masks have a common /// bit, the corresponding sub-registers may not overlap, but it can be /// assumed that they usually will. unsigned getSubRegIndexLaneMask(unsigned SubIdx) const { // SubIdx == 0 is allowed, it has the lane mask ~0u. assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); return SubRegIndexLaneMasks[SubIdx]; } /// regsOverlap - Returns true if the two registers are equal or alias each /// other. The registers may be virtual register. bool regsOverlap(unsigned regA, unsigned regB) const { if (regA == regB) return true; if (isVirtualRegister(regA) || isVirtualRegister(regB)) return false; // Regunits are numerically ordered. Find a common unit. MCRegUnitIterator RUA(regA, this); MCRegUnitIterator RUB(regB, this); do { if (*RUA == *RUB) return true; if (*RUA < *RUB) ++RUA; else ++RUB; } while (RUA.isValid() && RUB.isValid()); return false; } /// hasRegUnit - Returns true if Reg contains RegUnit. bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) if (*Units == RegUnit) return true; return false; } /// getCalleeSavedRegs - Return a null-terminated list of all of the /// callee saved registers on this target. The register should be in the /// order of desired callee-save stack frame offset. The first register is /// closest to the incoming stack pointer if stack grows down, and vice versa. /// virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0) const = 0; /// getCallPreservedMask - Return a mask of call-preserved registers for the /// given calling convention on the current sub-target. The mask should /// include all call-preserved aliases. This is used by the register /// allocator to determine which registers can be live across a call. /// /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. /// A set bit indicates that all bits of the corresponding register are /// preserved across the function call. The bit mask is expected to be /// sub-register complete, i.e. if A is preserved, so are all its /// sub-registers. /// /// Bits are numbered from the LSB, so the bit for physical register Reg can /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. /// /// A NULL pointer means that no register mask will be used, and call /// instructions should use implicit-def operands to indicate call clobbered /// registers. /// virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const { // The default mask clobbers everything. All targets should override. return 0; } /// getReservedRegs - Returns a bitset indexed by physical register number /// indicating if a register is a special register that has particular uses /// and should be considered unavailable at all times, e.g. SP, RA. This is /// used by register scavenger to determine what registers are free. virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; /// getMatchingSuperReg - Return a super-register of the specified register /// Reg so its sub-register of index SubIdx is Reg. unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, const TargetRegisterClass *RC) const { return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); } /// getMatchingSuperRegClass - Return a subclass of the specified register /// class A so that each register in it has a sub-register of the /// specified sub-register index which is in the specified register class B. /// /// TableGen will synthesize missing A sub-classes. virtual const TargetRegisterClass * getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const; /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that /// supports the sub-register index Idx. /// If no such sub-class exists, return NULL. /// If all registers in RC already have an Idx sub-register, return RC. /// /// TableGen generates a version of this function that is good enough in most /// cases. Targets can override if they have constraints that TableGen /// doesn't understand. For example, the x86 sub_8bit sub-register index is /// supported by the full GR32 register class in 64-bit mode, but only by the /// GR32_ABCD regiister class in 32-bit mode. /// /// TableGen will synthesize missing RC sub-classes. virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { assert(Idx == 0 && "Target has no sub-registers"); return RC; } /// composeSubRegIndices - Return the subregister index you get from composing /// two subregister indices. /// /// The special null sub-register index composes as the identity. /// /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) /// returns c. Note that composeSubRegIndices does not tell you about illegal /// compositions. If R does not have a subreg a, or R:a does not have a subreg /// b, composeSubRegIndices doesn't tell you. /// /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has /// ssub_0:S0 - ssub_3:S3 subregs. /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. /// unsigned composeSubRegIndices(unsigned a, unsigned b) const { if (!a) return b; if (!b) return a; return composeSubRegIndicesImpl(a, b); } protected: /// Overridden by TableGen in targets that have sub-registers. virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { llvm_unreachable("Target has no sub-registers"); } public: /// getCommonSuperRegClass - Find a common super-register class if it exists. /// /// Find a register class, SuperRC and two sub-register indices, PreA and /// PreB, such that: /// /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and /// /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and /// /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). /// /// SuperRC will be chosen such that no super-class of SuperRC satisfies the /// requirements, and there is no register class with a smaller spill size /// that satisfies the requirements. /// /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. /// /// Either of the PreA and PreB sub-register indices may be returned as 0. In /// that case, the returned register class will be a sub-class of the /// corresponding argument register class. /// /// The function returns NULL if no register class can be found. /// const TargetRegisterClass* getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, const TargetRegisterClass *RCB, unsigned SubB, unsigned &PreA, unsigned &PreB) const; //===--------------------------------------------------------------------===// // Register Class Information // /// Register class iterators /// regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_iterator regclass_end() const { return RegClassEnd; } unsigned getNumRegClasses() const { return (unsigned)(regclass_end()-regclass_begin()); } /// getRegClass - Returns the register class associated with the enumeration /// value. See class MCOperandInfo. const TargetRegisterClass *getRegClass(unsigned i) const { assert(i < getNumRegClasses() && "Register Class ID out of range"); return RegClassBegin[i]; } /// getCommonSubClass - find the largest common subclass of A and B. Return /// NULL if there is no common subclass. const TargetRegisterClass * getCommonSubClass(const TargetRegisterClass *A, const TargetRegisterClass *B) const; /// getPointerRegClass - Returns a TargetRegisterClass used for pointer /// values. If a target supports multiple different pointer register classes, /// kind specifies which one is indicated. virtual const TargetRegisterClass * getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { llvm_unreachable("Target didn't implement getPointerRegClass!"); } /// getCrossCopyRegClass - Returns a legal register class to copy a register /// in the specified class to or from. If it is possible to copy the register /// directly without using a cross register class copy, return the specified /// RC. Returns NULL if it is not possible to copy between a two registers of /// the specified class. virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const { return RC; } /// getLargestLegalSuperClass - Returns the largest super class of RC that is /// legal to use in the current sub-target and has the same spill size. /// The returned register class can be used to create virtual registers which /// means that all its registers can be copied and spilled. virtual const TargetRegisterClass* getLargestLegalSuperClass(const TargetRegisterClass *RC) const { /// The default implementation is very conservative and doesn't allow the /// register allocator to inflate register classes. return RC; } /// getRegPressureLimit - Return the register pressure "high water mark" for /// the specific register class. The scheduler is in high register pressure /// mode (for the specific register class) if it goes over the limit. /// /// Note: this is the old register pressure model that relies on a manually /// specified representative register class per value type. virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const { return 0; } /// Get the weight in units of pressure for this register class. virtual const RegClassWeight &getRegClassWeight( const TargetRegisterClass *RC) const = 0; /// Get the weight in units of pressure for this register unit. virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; /// Get the number of dimensions of register pressure. virtual unsigned getNumRegPressureSets() const = 0; /// Get the name of this register unit pressure set. virtual const char *getRegPressureSetName(unsigned Idx) const = 0; /// Get the register unit pressure limit for this dimension. /// This limit must be adjusted dynamically for reserved registers. virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0; /// Get the dimensions of register pressure impacted by this register class. /// Returns a -1 terminated array of pressure set IDs. virtual const int *getRegClassPressureSets( const TargetRegisterClass *RC) const = 0; /// Get the dimensions of register pressure impacted by this register unit. /// Returns a -1 terminated array of pressure set IDs. virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; /// Get a list of 'hint' registers that the register allocator should try /// first when allocating a physical register for the virtual register /// VirtReg. These registers are effectively moved to the front of the /// allocation order. /// /// The Order argument is the allocation order for VirtReg's register class /// as returned from RegisterClassInfo::getOrder(). The hint registers must /// come from Order, and they must not be reserved. /// /// The default implementation of this function can resolve /// target-independent hints provided to MRI::setRegAllocationHint with /// HintType == 0. Targets that override this function should defer to the /// default implementation if they have no reason to change the allocation /// order for VirtReg. There may be target-independent hints. virtual void getRegAllocationHints(unsigned VirtReg, ArrayRef Order, SmallVectorImpl &Hints, const MachineFunction &MF, const VirtRegMap *VRM = 0) const; /// avoidWriteAfterWrite - Return true if the register allocator should avoid /// writing a register from RC in two consecutive instructions. /// This can avoid pipeline stalls on certain architectures. /// It does cause increased register pressure, though. virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const { return false; } /// UpdateRegAllocHint - A callback to allow target a chance to update /// register allocation hints when a register is "changed" (e.g. coalesced) /// to another register. e.g. On ARM, some virtual registers should target /// register pairs, if one of pair is coalesced to another register, the /// allocation hint of the other half of the pair should be changed to point /// to the new register. virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg, MachineFunction &MF) const { // Do nothing. } /// requiresRegisterScavenging - returns true if the target requires (and can /// make use of) the register scavenger. virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { return false; } /// useFPForScavengingIndex - returns true if the target wants to use /// frame pointer based accesses to spill to the scavenger emergency spill /// slot. virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { return true; } /// requiresFrameIndexScavenging - returns true if the target requires post /// PEI scavenging of registers for materializing frame index constants. virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { return false; } /// requiresVirtualBaseRegisters - Returns true if the target wants the /// LocalStackAllocation pass to be run and virtual base registers /// used for more efficient stack access. virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { return false; } /// hasReservedSpillSlot - Return true if target has reserved a spill slot in /// the stack frame of the given function for the specified register. e.g. On /// x86, if the frame register is required, the first fixed stack object is /// reserved as its spill slot. This tells PEI not to create a new stack frame /// object for the given register. It should be called only after /// processFunctionBeforeCalleeSavedScan(). virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, int &FrameIdx) const { return false; } /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked /// after register allocation. virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { return false; } /// needsStackRealignment - true if storage within the function requires the /// stack pointer to be aligned more than the normal calling convention calls /// for. virtual bool needsStackRealignment(const MachineFunction &MF) const { return false; } /// getFrameIndexInstrOffset - Get the offset from the referenced frame /// index in the instruction, if there is one. virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const { return 0; } /// needsFrameBaseReg - Returns true if the instruction's frame index /// reference would be better served by a base register other than FP /// or SP. Used by LocalStackFrameAllocation to determine which frame index /// references it should create new base registers for. virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { return false; } /// materializeFrameBaseRegister - Insert defining instruction(s) for /// BaseReg to be a pointer to FrameIdx before insertion point I. virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, unsigned BaseReg, int FrameIdx, int64_t Offset) const { llvm_unreachable("materializeFrameBaseRegister does not exist on this " "target"); } /// resolveFrameIndex - Resolve a frame index operand of an instruction /// to reference the indicated base register plus offset instead. virtual void resolveFrameIndex(MachineBasicBlock::iterator I, unsigned BaseReg, int64_t Offset) const { llvm_unreachable("resolveFrameIndex does not exist on this target"); } /// isFrameOffsetLegal - Determine whether a given offset immediate is /// encodable to resolve a frame index. virtual bool isFrameOffsetLegal(const MachineInstr *MI, int64_t Offset) const { llvm_unreachable("isFrameOffsetLegal does not exist on this target"); } /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog /// code insertion to eliminate call frame setup and destroy pseudo /// instructions (but only if the Target is using them). It is responsible /// for eliminating these instructions, replacing them with concrete /// instructions. This method need only be implemented if using call frame /// setup/destroy pseudo instructions. /// virtual void eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { llvm_unreachable("Call Frame Pseudo Instructions do not exist on this " "target!"); } /// saveScavengerRegister - Spill the register so it can be used by the /// register scavenger. Return true if the register was spilled, false /// otherwise. If this function does not spill the register, the scavenger /// will instead spill it to the emergency spill slot. /// virtual bool saveScavengerRegister(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, MachineBasicBlock::iterator &UseMI, const TargetRegisterClass *RC, unsigned Reg) const { return false; } /// eliminateFrameIndex - This method must be overriden to eliminate abstract /// frame indices from instructions which may use them. The instruction /// referenced by the iterator contains an MO_FrameIndex operand which must be /// eliminated by this method. This method may modify or replace the /// specified instruction, as long as it keeps the iterator pointing at the /// finished product. SPAdj is the SP adjustment due to call frame setup /// instruction. virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj, RegScavenger *RS=NULL) const = 0; //===--------------------------------------------------------------------===// /// Debug information queries. /// getFrameRegister - This method should return the register used as a base /// for values allocated in the current stack frame. virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; /// getCompactUnwindRegNum - This function maps the register to the number for /// compact unwind encoding. Return -1 if the register isn't valid. virtual int getCompactUnwindRegNum(unsigned, bool) const { return -1; } }; //===----------------------------------------------------------------------===// // SuperRegClassIterator //===----------------------------------------------------------------------===// // // Iterate over the possible super-registers for a given register class. The // iterator will visit a list of pairs (Idx, Mask) corresponding to the // possible classes of super-registers. // // Each bit mask will have at least one set bit, and each set bit in Mask // corresponds to a SuperRC such that: // // For all Reg in SuperRC: Reg:Idx is in RC. // // The iterator can include (O, RC->getSubClassMask()) as the first entry which // also satisfies the above requirement, assuming Reg:0 == Reg. // class SuperRegClassIterator { const unsigned RCMaskWords; unsigned SubReg; const uint16_t *Idx; const uint32_t *Mask; public: /// Create a SuperRegClassIterator that visits all the super-register classes /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. SuperRegClassIterator(const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, bool IncludeSelf = false) : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), SubReg(0), Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) { if (!IncludeSelf) ++*this; } /// Returns true if this iterator is still pointing at a valid entry. bool isValid() const { return Idx; } /// Returns the current sub-register index. unsigned getSubReg() const { return SubReg; } /// Returns the bit mask if register classes that getSubReg() projects into /// RC. const uint32_t *getMask() const { return Mask; } /// Advance iterator to the next entry. void operator++() { assert(isValid() && "Cannot move iterator past end."); Mask += RCMaskWords; SubReg = *Idx++; if (!SubReg) Idx = 0; } }; // This is useful when building IndexedMaps keyed on virtual registers struct VirtReg2IndexFunctor : public std::unary_function { unsigned operator()(unsigned Reg) const { return TargetRegisterInfo::virtReg2Index(Reg); } }; /// PrintReg - Helper class for printing registers on a raw_ostream. /// Prints virtual and physical registers with or without a TRI instance. /// /// The format is: /// %noreg - NoRegister /// %vreg5 - a virtual register. /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). /// %EAX - a physical register /// %physreg17 - a physical register when no TRI instance given. /// /// Usage: OS << PrintReg(Reg, TRI) << '\n'; /// class PrintReg { const TargetRegisterInfo *TRI; unsigned Reg; unsigned SubIdx; public: explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0) : TRI(tri), Reg(reg), SubIdx(subidx) {} void print(raw_ostream&) const; }; static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) { PR.print(OS); return OS; } /// PrintRegUnit - Helper class for printing register units on a raw_ostream. /// /// Register units are named after their root registers: /// /// AL - Single root. /// FP0~ST7 - Dual roots. /// /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n'; /// class PrintRegUnit { const TargetRegisterInfo *TRI; unsigned Unit; public: PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri) : TRI(tri), Unit(unit) {} void print(raw_ostream&) const; }; static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) { PR.print(OS); return OS; } } // End llvm namespace #endif