//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes an abstract interface used to get information about a // target machines register file. This information is used for a variety of // purposed, especially register allocation. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETREGISTERINFO_H #define LLVM_TARGET_TARGETREGISTERINFO_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/ADT/DenseSet.h" #include #include namespace llvm { class BitVector; class MachineFunction; class MachineMove; class RegScavenger; template class SmallVectorImpl; class raw_ostream; /// TargetRegisterDesc - This record contains all of the information known about /// a particular register. The Overlaps field contains a pointer to a zero /// terminated array of registers that this register aliases, starting with /// itself. This is needed for architectures like X86 which have AL alias AX /// alias EAX. The SubRegs field is a zero terminated array of registers that /// are sub-registers of the specific register, e.g. AL, AH are sub-registers of /// AX. The SuperRegs field is a zero terminated array of registers that are /// super-registers of the specific register, e.g. RAX, EAX, are super-registers /// of AX. /// struct TargetRegisterDesc { const char *Name; // Printable name for the reg (for debugging) const unsigned *Overlaps; // Overlapping registers, described above const unsigned *SubRegs; // Sub-register set, described above const unsigned *SuperRegs; // Super-register set, described above }; class TargetRegisterClass { public: typedef const unsigned* iterator; typedef const unsigned* const_iterator; typedef const EVT* vt_iterator; typedef const TargetRegisterClass* const * sc_iterator; private: unsigned ID; const char *Name; const vt_iterator VTs; const sc_iterator SubClasses; const sc_iterator SuperClasses; const sc_iterator SubRegClasses; const sc_iterator SuperRegClasses; const unsigned RegSize, Alignment; // Size & Alignment of register in bytes const int CopyCost; const iterator RegsBegin, RegsEnd; DenseSet RegSet; public: TargetRegisterClass(unsigned id, const char *name, const EVT *vts, const TargetRegisterClass * const *subcs, const TargetRegisterClass * const *supcs, const TargetRegisterClass * const *subregcs, const TargetRegisterClass * const *superregcs, unsigned RS, unsigned Al, int CC, iterator RB, iterator RE) : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs), SubRegClasses(subregcs), SuperRegClasses(superregcs), RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) { for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I) RegSet.insert(*I); } virtual ~TargetRegisterClass() {} // Allow subclasses /// getID() - Return the register class ID number. /// unsigned getID() const { return ID; } /// getName() - Return the register class name for debugging. /// const char *getName() const { return Name; } /// begin/end - Return all of the registers in this class. /// iterator begin() const { return RegsBegin; } iterator end() const { return RegsEnd; } /// getNumRegs - Return the number of registers in this class. /// unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); } /// getRegister - Return the specified register in the class. /// unsigned getRegister(unsigned i) const { assert(i < getNumRegs() && "Register number out of range!"); return RegsBegin[i]; } /// contains - Return true if the specified register is included in this /// register class. This does not include virtual registers. bool contains(unsigned Reg) const { return RegSet.count(Reg); } /// contains - Return true if both registers are in this class. bool contains(unsigned Reg1, unsigned Reg2) const { return contains(Reg1) && contains(Reg2); } /// hasType - return true if this TargetRegisterClass has the ValueType vt. /// bool hasType(EVT vt) const { for(int i = 0; VTs[i] != MVT::Other; ++i) if (VTs[i] == vt) return true; return false; } /// vt_begin / vt_end - Loop over all of the value types that can be /// represented by values in this register class. vt_iterator vt_begin() const { return VTs; } vt_iterator vt_end() const { vt_iterator I = VTs; while (*I != MVT::Other) ++I; return I; } /// subregclasses_begin / subregclasses_end - Loop over all of /// the subreg register classes of this register class. sc_iterator subregclasses_begin() const { return SubRegClasses; } sc_iterator subregclasses_end() const { sc_iterator I = SubRegClasses; while (*I != NULL) ++I; return I; } /// getSubRegisterRegClass - Return the register class of subregisters with /// index SubIdx, or NULL if no such class exists. const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const { assert(SubIdx>0 && "Invalid subregister index"); return SubRegClasses[SubIdx-1]; } /// superregclasses_begin / superregclasses_end - Loop over all of /// the superreg register classes of this register class. sc_iterator superregclasses_begin() const { return SuperRegClasses; } sc_iterator superregclasses_end() const { sc_iterator I = SuperRegClasses; while (*I != NULL) ++I; return I; } /// hasSubClass - return true if the specified TargetRegisterClass /// is a proper subset of this TargetRegisterClass. bool hasSubClass(const TargetRegisterClass *cs) const { for (int i = 0; SubClasses[i] != NULL; ++i) if (SubClasses[i] == cs) return true; return false; } /// subclasses_begin / subclasses_end - Loop over all of the classes /// that are proper subsets of this register class. sc_iterator subclasses_begin() const { return SubClasses; } sc_iterator subclasses_end() const { sc_iterator I = SubClasses; while (*I != NULL) ++I; return I; } /// hasSuperClass - return true if the specified TargetRegisterClass is a /// proper superset of this TargetRegisterClass. bool hasSuperClass(const TargetRegisterClass *cs) const { for (int i = 0; SuperClasses[i] != NULL; ++i) if (SuperClasses[i] == cs) return true; return false; } /// superclasses_begin / superclasses_end - Loop over all of the classes /// that are proper supersets of this register class. sc_iterator superclasses_begin() const { return SuperClasses; } sc_iterator superclasses_end() const { sc_iterator I = SuperClasses; while (*I != NULL) ++I; return I; } /// isASubClass - return true if this TargetRegisterClass is a subset /// class of at least one other TargetRegisterClass. bool isASubClass() const { return SuperClasses[0] != 0; } /// allocation_order_begin/end - These methods define a range of registers /// which specify the registers in this class that are valid to register /// allocate, and the preferred order to allocate them in. For example, /// callee saved registers should be at the end of the list, because it is /// cheaper to allocate caller saved registers. /// /// These methods take a MachineFunction argument, which can be used to tune /// the allocatable registers based on the characteristics of the function, /// subtarget, or other criteria. /// /// Register allocators should account for the fact that an allocation /// order iterator may return a reserved register and always check /// if the register is allocatable (getAllocatableSet()) before using it. /// /// By default, these methods return all registers in the class. /// virtual iterator allocation_order_begin(const MachineFunction &MF) const { return begin(); } virtual iterator allocation_order_end(const MachineFunction &MF) const { return end(); } /// getSize - Return the size of the register in bytes, which is also the size /// of a stack slot allocated to hold a spilled copy of this register. unsigned getSize() const { return RegSize; } /// getAlignment - Return the minimum required alignment for a register of /// this class. unsigned getAlignment() const { return Alignment; } /// getCopyCost - Return the cost of copying a value between two registers in /// this class. A negative number means the register class is very expensive /// to copy e.g. status flag register classes. int getCopyCost() const { return CopyCost; } }; /// TargetRegisterInfo base class - We assume that the target defines a static /// array of TargetRegisterDesc objects that represent all of the machine /// registers that the target has. As such, we simply have to track a pointer /// to this array so that we can turn register number into a register /// descriptor. /// class TargetRegisterInfo { protected: const unsigned* SubregHash; const unsigned SubregHashSize; const unsigned* AliasesHash; const unsigned AliasesHashSize; public: typedef const TargetRegisterClass * const * regclass_iterator; private: const TargetRegisterDesc *Desc; // Pointer to the descriptor array const char *const *SubRegIndexNames; // Names of subreg indexes. unsigned NumRegs; // Number of entries in the array regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses int CallFrameSetupOpcode, CallFrameDestroyOpcode; protected: TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR, regclass_iterator RegClassBegin, regclass_iterator RegClassEnd, const char *const *subregindexnames, int CallFrameSetupOpcode = -1, int CallFrameDestroyOpcode = -1, const unsigned* subregs = 0, const unsigned subregsize = 0, const unsigned* aliases = 0, const unsigned aliasessize = 0); virtual ~TargetRegisterInfo(); public: // Register numbers can represent physical registers, virtual registers, and // sometimes stack slots. The unsigned values are divided into these ranges: // // 0 Not a register, can be used as a sentinel. // [1;2^30) Physical registers assigned by TableGen. // [2^30;2^31) Stack slots. (Rarely used.) // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. // // Further sentinels can be allocated from the small negative integers. // DenseMapInfo uses -1u and -2u. /// isStackSlot - Sometimes it is useful the be able to store a non-negative /// frame index in a variable that normally holds a register. isStackSlot() /// returns true if Reg is in the range used for stack slots. /// /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack /// slots, so if a variable may contains a stack slot, always check /// isStackSlot() first. /// static bool isStackSlot(unsigned Reg) { return int(Reg) >= (1 << 30); } /// stackSlot2Index - Compute the frame index from a register value /// representing a stack slot. static int stackSlot2Index(unsigned Reg) { assert(isStackSlot(Reg) && "Not a stack slot"); return int(Reg - (1u << 30)); } /// index2StackSlot - Convert a non-negative frame index to a stack slot /// register value. static unsigned index2StackSlot(int FI) { assert(FI >= 0 && "Cannot hold a negative frame index."); return FI + (1u << 30); } /// isPhysicalRegister - Return true if the specified register number is in /// the physical register namespace. static bool isPhysicalRegister(unsigned Reg) { assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); return int(Reg) > 0; } /// isVirtualRegister - Return true if the specified register number is in /// the virtual register namespace. static bool isVirtualRegister(unsigned Reg) { assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); return int(Reg) < 0; } /// virtReg2Index - Convert a virtual register number to a 0-based index. /// The first virtual register in a function will get the index 0. static unsigned virtReg2Index(unsigned Reg) { assert(isVirtualRegister(Reg) && "Not a virtual register"); return Reg - (1u << 31); } /// index2VirtReg - Convert a 0-based index to a virtual register number. /// This is the inverse operation of VirtReg2IndexFunctor below. static unsigned index2VirtReg(unsigned Index) { return Index + (1u << 31); } /// getMinimalPhysRegClass - Returns the Register Class of a physical /// register of the given type, picking the most sub register class of /// the right type that contains this physreg. const TargetRegisterClass * getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const; /// getAllocatableSet - Returns a bitset indexed by register number /// indicating if a register is allocatable or not. If a register class is /// specified, returns the subset for the class. BitVector getAllocatableSet(const MachineFunction &MF, const TargetRegisterClass *RC = NULL) const; const TargetRegisterDesc &operator[](unsigned RegNo) const { assert(RegNo < NumRegs && "Attempting to access record for invalid register number!"); return Desc[RegNo]; } /// Provide a get method, equivalent to [], but more useful if we have a /// pointer to this object. /// const TargetRegisterDesc &get(unsigned RegNo) const { return operator[](RegNo); } /// getAliasSet - Return the set of registers aliased by the specified /// register, or a null list of there are none. The list returned is zero /// terminated. /// const unsigned *getAliasSet(unsigned RegNo) const { // The Overlaps set always begins with Reg itself. return get(RegNo).Overlaps + 1; } /// getOverlaps - Return a list of registers that overlap Reg, including /// itself. This is the same as the alias set except Reg is included in the /// list. /// These are exactly the registers in { x | regsOverlap(x, Reg) }. /// const unsigned *getOverlaps(unsigned RegNo) const { return get(RegNo).Overlaps; } /// getSubRegisters - Return the list of registers that are sub-registers of /// the specified register, or a null list of there are none. The list /// returned is zero terminated and sorted according to super-sub register /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH. /// const unsigned *getSubRegisters(unsigned RegNo) const { return get(RegNo).SubRegs; } /// getSuperRegisters - Return the list of registers that are super-registers /// of the specified register, or a null list of there are none. The list /// returned is zero terminated and sorted according to super-sub register /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX. /// const unsigned *getSuperRegisters(unsigned RegNo) const { return get(RegNo).SuperRegs; } /// getName - Return the human-readable symbolic target-specific name for the /// specified physical register. const char *getName(unsigned RegNo) const { return get(RegNo).Name; } /// getNumRegs - Return the number of registers this target has (useful for /// sizing arrays holding per register information) unsigned getNumRegs() const { return NumRegs; } /// getSubRegIndexName - Return the human-readable symbolic target-specific /// name for the specified SubRegIndex. const char *getSubRegIndexName(unsigned SubIdx) const { assert(SubIdx && "This is not a subregister index"); return SubRegIndexNames[SubIdx-1]; } /// regsOverlap - Returns true if the two registers are equal or alias each /// other. The registers may be virtual register. bool regsOverlap(unsigned regA, unsigned regB) const { if (regA == regB) return true; if (isVirtualRegister(regA) || isVirtualRegister(regB)) return false; // regA and regB are distinct physical registers. Do they alias? size_t index = (regA + regB * 37) & (AliasesHashSize-1); unsigned ProbeAmt = 0; while (AliasesHash[index*2] != 0 && AliasesHash[index*2+1] != 0) { if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB) return true; index = (index + ProbeAmt) & (AliasesHashSize-1); ProbeAmt += 2; } return false; } /// isSubRegister - Returns true if regB is a sub-register of regA. /// bool isSubRegister(unsigned regA, unsigned regB) const { // SubregHash is a simple quadratically probed hash table. size_t index = (regA + regB * 37) & (SubregHashSize-1); unsigned ProbeAmt = 2; while (SubregHash[index*2] != 0 && SubregHash[index*2+1] != 0) { if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB) return true; index = (index + ProbeAmt) & (SubregHashSize-1); ProbeAmt += 2; } return false; } /// isSuperRegister - Returns true if regB is a super-register of regA. /// bool isSuperRegister(unsigned regA, unsigned regB) const { return isSubRegister(regB, regA); } /// getCalleeSavedRegs - Return a null-terminated list of all of the /// callee saved registers on this target. The register should be in the /// order of desired callee-save stack frame offset. The first register is /// closed to the incoming stack pointer if stack grows down, and vice versa. virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0) const = 0; /// getReservedRegs - Returns a bitset indexed by physical register number /// indicating if a register is a special register that has particular uses /// and should be considered unavailable at all times, e.g. SP, RA. This is /// used by register scavenger to determine what registers are free. virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; /// getSubReg - Returns the physical register number of sub-register "Index" /// for physical register RegNo. Return zero if the sub-register does not /// exist. virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0; /// getSubRegIndex - For a given register pair, return the sub-register index /// if the second register is a sub-register of the first. Return zero /// otherwise. virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0; /// getMatchingSuperReg - Return a super-register of the specified register /// Reg so its sub-register of index SubIdx is Reg. unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, const TargetRegisterClass *RC) const { for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs) if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR)) return SR; return 0; } /// canCombineSubRegIndices - Given a register class and a list of /// subregister indices, return true if it's possible to combine the /// subregister indices into one that corresponds to a larger /// subregister. Return the new subregister index by reference. Note the /// new index may be zero if the given subregisters can be combined to /// form the whole register. virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC, SmallVectorImpl &SubIndices, unsigned &NewSubIdx) const { return 0; } /// getMatchingSuperRegClass - Return a subclass of the specified register /// class A so that each register in it has a sub-register of the /// specified sub-register index which is in the specified register class B. virtual const TargetRegisterClass * getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const { return 0; } /// composeSubRegIndices - Return the subregister index you get from composing /// two subregister indices. /// /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) /// returns c. Note that composeSubRegIndices does not tell you about illegal /// compositions. If R does not have a subreg a, or R:a does not have a subreg /// b, composeSubRegIndices doesn't tell you. /// /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has /// ssub_0:S0 - ssub_3:S3 subregs. /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. /// virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const { // This default implementation is correct for most targets. return b; } //===--------------------------------------------------------------------===// // Register Class Information // /// Register class iterators /// regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_iterator regclass_end() const { return RegClassEnd; } unsigned getNumRegClasses() const { return (unsigned)(regclass_end()-regclass_begin()); } /// getRegClass - Returns the register class associated with the enumeration /// value. See class TargetOperandInfo. const TargetRegisterClass *getRegClass(unsigned i) const { assert(i < getNumRegClasses() && "Register Class ID out of range"); return RegClassBegin[i]; } /// getPointerRegClass - Returns a TargetRegisterClass used for pointer /// values. If a target supports multiple different pointer register classes, /// kind specifies which one is indicated. virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const { assert(0 && "Target didn't implement getPointerRegClass!"); return 0; // Must return a value in order to compile with VS 2005 } /// getCrossCopyRegClass - Returns a legal register class to copy a register /// in the specified class to or from. If it is possible to copy the register /// directly without using a cross register class copy, return the specified /// RC. Returns NULL if it is not possible to copy between a two registers of /// the specified class. virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const { return NULL; } /// getRegPressureLimit - Return the register pressure "high water mark" for /// the specific register class. The scheduler is in high register pressure /// mode (for the specific register class) if it goes over the limit. virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const { return 0; } /// getAllocationOrder - Returns the register allocation order for a specified /// register class in the form of a pair of TargetRegisterClass iterators. virtual std::pair getAllocationOrder(const TargetRegisterClass *RC, unsigned HintType, unsigned HintReg, const MachineFunction &MF) const { return std::make_pair(RC->allocation_order_begin(MF), RC->allocation_order_end(MF)); } /// ResolveRegAllocHint - Resolves the specified register allocation hint /// to a physical register. Returns the physical register if it is successful. virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg, const MachineFunction &MF) const { if (Type == 0 && Reg && isPhysicalRegister(Reg)) return Reg; return 0; } /// UpdateRegAllocHint - A callback to allow target a chance to update /// register allocation hints when a register is "changed" (e.g. coalesced) /// to another register. e.g. On ARM, some virtual registers should target /// register pairs, if one of pair is coalesced to another register, the /// allocation hint of the other half of the pair should be changed to point /// to the new register. virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg, MachineFunction &MF) const { // Do nothing. } /// requiresRegisterScavenging - returns true if the target requires (and can /// make use of) the register scavenger. virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { return false; } /// useFPForScavengingIndex - returns true if the target wants to use /// frame pointer based accesses to spill to the scavenger emergency spill /// slot. virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { return true; } /// requiresFrameIndexScavenging - returns true if the target requires post /// PEI scavenging of registers for materializing frame index constants. virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { return false; } /// requiresVirtualBaseRegisters - Returns true if the target wants the /// LocalStackAllocation pass to be run and virtual base registers /// used for more efficient stack access. virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { return false; } /// hasReservedSpillSlot - Return true if target has reserved a spill slot in /// the stack frame of the given function for the specified register. e.g. On /// x86, if the frame register is required, the first fixed stack object is /// reserved as its spill slot. This tells PEI not to create a new stack frame /// object for the given register. It should be called only after /// processFunctionBeforeCalleeSavedScan(). virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, int &FrameIdx) const { return false; } /// needsStackRealignment - true if storage within the function requires the /// stack pointer to be aligned more than the normal calling convention calls /// for. virtual bool needsStackRealignment(const MachineFunction &MF) const { return false; } /// getFrameIndexInstrOffset - Get the offset from the referenced frame /// index in the instruction, if there is one. virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const { return 0; } /// needsFrameBaseReg - Returns true if the instruction's frame index /// reference would be better served by a base register other than FP /// or SP. Used by LocalStackFrameAllocation to determine which frame index /// references it should create new base registers for. virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { return false; } /// materializeFrameBaseRegister - Insert defining instruction(s) for /// BaseReg to be a pointer to FrameIdx before insertion point I. virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, unsigned BaseReg, int FrameIdx, int64_t Offset) const { assert(0 && "materializeFrameBaseRegister does not exist on this target"); } /// resolveFrameIndex - Resolve a frame index operand of an instruction /// to reference the indicated base register plus offset instead. virtual void resolveFrameIndex(MachineBasicBlock::iterator I, unsigned BaseReg, int64_t Offset) const { assert(0 && "resolveFrameIndex does not exist on this target"); } /// isFrameOffsetLegal - Determine whether a given offset immediate is /// encodable to resolve a frame index. virtual bool isFrameOffsetLegal(const MachineInstr *MI, int64_t Offset) const { assert(0 && "isFrameOffsetLegal does not exist on this target"); return false; // Must return a value in order to compile with VS 2005 } /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the /// frame setup/destroy instructions if they exist (-1 otherwise). Some /// targets use pseudo instructions in order to abstract away the difference /// between operating with a frame pointer and operating without, through the /// use of these two instructions. /// int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog /// code insertion to eliminate call frame setup and destroy pseudo /// instructions (but only if the Target is using them). It is responsible /// for eliminating these instructions, replacing them with concrete /// instructions. This method need only be implemented if using call frame /// setup/destroy pseudo instructions. /// virtual void eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 && "eliminateCallFramePseudoInstr must be implemented if using" " call frame setup/destroy pseudo instructions!"); assert(0 && "Call Frame Pseudo Instructions do not exist on this target!"); } /// saveScavengerRegister - Spill the register so it can be used by the /// register scavenger. Return true if the register was spilled, false /// otherwise. If this function does not spill the register, the scavenger /// will instead spill it to the emergency spill slot. /// virtual bool saveScavengerRegister(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, MachineBasicBlock::iterator &UseMI, const TargetRegisterClass *RC, unsigned Reg) const { return false; } /// eliminateFrameIndex - This method must be overriden to eliminate abstract /// frame indices from instructions which may use them. The instruction /// referenced by the iterator contains an MO_FrameIndex operand which must be /// eliminated by this method. This method may modify or replace the /// specified instruction, as long as it keeps the iterator pointing at the /// finished product. SPAdj is the SP adjustment due to call frame setup /// instruction. virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj, RegScavenger *RS=NULL) const = 0; //===--------------------------------------------------------------------===// /// Debug information queries. /// getDwarfRegNum - Map a target register to an equivalent dwarf register /// number. Returns -1 if there is no equivalent value. The second /// parameter allows targets to use different numberings for EH info and /// debugging info. virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0; /// getFrameRegister - This method should return the register used as a base /// for values allocated in the current stack frame. virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; /// getRARegister - This method should return the register where the return /// address can be found. virtual unsigned getRARegister() const = 0; }; // This is useful when building IndexedMaps keyed on virtual registers struct VirtReg2IndexFunctor : public std::unary_function { unsigned operator()(unsigned Reg) const { return TargetRegisterInfo::virtReg2Index(Reg); } }; /// getCommonSubClass - find the largest common subclass of A and B. Return NULL /// if there is no common subclass. const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A, const TargetRegisterClass *B); /// PrintReg - Helper class for printing registers on a raw_ostream. /// Prints virtual and physical registers with or without a TRI instance. /// /// The format is: /// %noreg - NoRegister /// %vreg5 - a virtual register. /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). /// %EAX - a physical register /// %physreg17 - a physical register when no TRI instance given. /// /// Usage: OS << PrintReg(Reg, TRI) << '\n'; /// class PrintReg { const TargetRegisterInfo *TRI; unsigned Reg; unsigned SubIdx; public: PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0) : TRI(tri), Reg(reg), SubIdx(subidx) {} void print(raw_ostream&) const; }; static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) { PR.print(OS); return OS; } } // End llvm namespace #endif