//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the generic AliasAnalysis interface which is used as the // common interface used by all clients and implementations of alias analysis. // // This file also implements the default version of the AliasAnalysis interface // that is to be used when no other implementation is specified. This does some // simple tests that detect obvious cases: two different global pointers cannot // alias, a global cannot alias a malloc, two different mallocs cannot alias, // etc. // // This alias analysis implementation really isn't very good for anything, but // it is very fast, and makes a nice clean default implementation. Because it // handles lots of little corner cases, other, more complex, alias analysis // implementations may choose to rely on this pass to resolve these simple and // easy cases. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Pass.h" #include "llvm/BasicBlock.h" #include "llvm/Function.h" #include "llvm/IntrinsicInst.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Target/TargetData.h" using namespace llvm; // Register the AliasAnalysis interface, providing a nice name to refer to. static RegisterAnalysisGroup Z("Alias Analysis"); char AliasAnalysis::ID = 0; //===----------------------------------------------------------------------===// // Default chaining methods //===----------------------------------------------------------------------===// AliasAnalysis::AliasResult AliasAnalysis::alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->alias(V1, V1Size, V2, V2Size); } bool AliasAnalysis::pointsToConstantMemory(const Value *P) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->pointsToConstantMemory(P); } void AliasAnalysis::deleteValue(Value *V) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); AA->deleteValue(V); } void AliasAnalysis::copyValue(Value *From, Value *To) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); AA->copyValue(From, To); } AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Value *P, unsigned Size) { // Don't assert AA because BasicAA calls us in order to make use of the // logic here. ModRefBehavior MRB = getModRefBehavior(CS); if (MRB == DoesNotAccessMemory) return NoModRef; ModRefResult Mask = ModRef; if (MRB == OnlyReadsMemory) Mask = Ref; else if (MRB == AliasAnalysis::AccessesArguments) { bool doesAlias = false; for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) if (!isNoAlias(*AI, ~0U, P, Size)) { doesAlias = true; break; } if (!doesAlias) return NoModRef; } // If P points to a constant memory location, the call definitely could not // modify the memory location. if ((Mask & Mod) && pointsToConstantMemory(P)) Mask = ModRefResult(Mask & ~Mod); // If this is BasicAA, don't forward. if (!AA) return Mask; // Otherwise, fall back to the next AA in the chain. But we can merge // in any mask we've managed to compute. return ModRefResult(AA->getModRefInfo(CS, P, Size) & Mask); } AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { // Don't assert AA because BasicAA calls us in order to make use of the // logic here. // If CS1 or CS2 are readnone, they don't interact. ModRefBehavior CS1B = getModRefBehavior(CS1); if (CS1B == DoesNotAccessMemory) return NoModRef; ModRefBehavior CS2B = getModRefBehavior(CS2); if (CS2B == DoesNotAccessMemory) return NoModRef; // If they both only read from memory, there is no dependence. if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory) return NoModRef; AliasAnalysis::ModRefResult Mask = ModRef; // If CS1 only reads memory, the only dependence on CS2 can be // from CS1 reading memory written by CS2. if (CS1B == OnlyReadsMemory) Mask = ModRefResult(Mask & Ref); // If CS2 only access memory through arguments, accumulate the mod/ref // information from CS1's references to the memory referenced by // CS2's arguments. if (CS2B == AccessesArguments) { AliasAnalysis::ModRefResult R = NoModRef; for (ImmutableCallSite::arg_iterator I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { R = ModRefResult((R | getModRefInfo(CS1, *I, UnknownSize)) & Mask); if (R == Mask) break; } return R; } // If CS1 only accesses memory through arguments, check if CS2 references // any of the memory referenced by CS1's arguments. If not, return NoModRef. if (CS1B == AccessesArguments) { AliasAnalysis::ModRefResult R = NoModRef; for (ImmutableCallSite::arg_iterator I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) if (getModRefInfo(CS2, *I, UnknownSize) != NoModRef) { R = Mask; break; } if (R == NoModRef) return R; } // If this is BasicAA, don't forward. if (!AA) return Mask; // Otherwise, fall back to the next AA in the chain. But we can merge // in any mask we've managed to compute. return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask); } AliasAnalysis::ModRefBehavior AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { // Don't assert AA because BasicAA calls us in order to make use of the // logic here. ModRefBehavior Min = UnknownModRefBehavior; // Call back into the alias analysis with the other form of getModRefBehavior // to see if it can give a better response. if (const Function *F = CS.getCalledFunction()) Min = getModRefBehavior(F); // If this is BasicAA, don't forward. if (!AA) return Min; // Otherwise, fall back to the next AA in the chain. But we can merge // in any result we've managed to compute. return std::min(AA->getModRefBehavior(CS), Min); } AliasAnalysis::ModRefBehavior AliasAnalysis::getModRefBehavior(const Function *F) { assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); return AA->getModRefBehavior(F); } AliasAnalysis::DependenceResult AliasAnalysis::getDependence(const Instruction *First, const Value *FirstPHITranslatedAddr, DependenceQueryFlags FirstFlags, const Instruction *Second, const Value *SecondPHITranslatedAddr, DependenceQueryFlags SecondFlags) { assert(AA && "AA didn't call InitializeAliasAnalyais in its run method!"); return AA->getDependence(First, FirstPHITranslatedAddr, FirstFlags, Second, SecondPHITranslatedAddr, SecondFlags); } //===----------------------------------------------------------------------===// // AliasAnalysis non-virtual helper method implementation //===----------------------------------------------------------------------===// AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(const LoadInst *L, const Value *P, unsigned Size) { // Be conservative in the face of volatile. if (L->isVolatile()) return ModRef; // If the load address doesn't alias the given address, it doesn't read // or write the specified memory. if (!alias(L->getOperand(0), getTypeStoreSize(L->getType()), P, Size)) return NoModRef; // Otherwise, a load just reads. return Ref; } AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(const StoreInst *S, const Value *P, unsigned Size) { // Be conservative in the face of volatile. if (S->isVolatile()) return ModRef; // If the store address cannot alias the pointer in question, then the // specified memory cannot be modified by the store. if (!alias(S->getOperand(1), getTypeStoreSize(S->getOperand(0)->getType()), P, Size)) return NoModRef; // If the pointer is a pointer to constant memory, then it could not have been // modified by this store. if (pointsToConstantMemory(P)) return NoModRef; // Otherwise, a store just writes. return Mod; } AliasAnalysis::ModRefResult AliasAnalysis::getModRefInfo(const VAArgInst *V, const Value *P, unsigned Size) { // If the va_arg address cannot alias the pointer in question, then the // specified memory cannot be accessed by the va_arg. if (!alias(V->getOperand(0), UnknownSize, P, Size)) return NoModRef; // If the pointer is a pointer to constant memory, then it could not have been // modified by this va_arg. if (pointsToConstantMemory(P)) return NoModRef; // Otherwise, a va_arg reads and writes. return ModRef; } AliasAnalysis::DependenceResult AliasAnalysis::getDependenceViaModRefInfo(const Instruction *First, const Value *FirstPHITranslatedAddr, DependenceQueryFlags FirstFlags, const Instruction *Second, const Value *SecondPHITranslatedAddr, DependenceQueryFlags SecondFlags) { if (const LoadInst *L = dyn_cast(First)) { // Be over-conservative with volatile for now. if (L->isVolatile()) return Unknown; // If we don't have a phi-translated address, use the actual one. if (!FirstPHITranslatedAddr) FirstPHITranslatedAddr = L->getPointerOperand(); // Forward this query to getModRefInfo. switch (getModRefInfo(Second, FirstPHITranslatedAddr, getTypeStoreSize(L->getType()))) { case NoModRef: // Second doesn't reference First's memory, so they're independent. return Independent; case Ref: // Second only reads from the memory read from by First. If it // also writes to any other memory, be conservative. if (Second->mayWriteToMemory()) return Unknown; // If it's loading the same size from the same address, we can // give a more precise result. if (const LoadInst *SecondL = dyn_cast(Second)) { // If we don't have a phi-translated address, use the actual one. if (!SecondPHITranslatedAddr) SecondPHITranslatedAddr = SecondL->getPointerOperand(); unsigned LSize = getTypeStoreSize(L->getType()); unsigned SecondLSize = getTypeStoreSize(SecondL->getType()); if (alias(FirstPHITranslatedAddr, LSize, SecondPHITranslatedAddr, SecondLSize) == MustAlias) { // If the loads are the same size, it's ReadThenRead. if (LSize == SecondLSize) return ReadThenRead; // If the second load is smaller, it's only ReadThenReadSome. if (LSize > SecondLSize) return ReadThenReadSome; } } // Otherwise it's just two loads. return Independent; case Mod: // Second only writes to the memory read from by First. If it // also reads from any other memory, be conservative. if (Second->mayReadFromMemory()) return Unknown; // If it's storing the same size to the same address, we can // give a more precise result. if (const StoreInst *SecondS = dyn_cast(Second)) { // If we don't have a phi-translated address, use the actual one. if (!SecondPHITranslatedAddr) SecondPHITranslatedAddr = SecondS->getPointerOperand(); unsigned LSize = getTypeStoreSize(L->getType()); unsigned SecondSSize = getTypeStoreSize(SecondS->getType()); if (alias(FirstPHITranslatedAddr, LSize, SecondPHITranslatedAddr, SecondSSize) == MustAlias) { // If the load and the store are the same size, it's ReadThenWrite. if (LSize == SecondSSize) return ReadThenWrite; } } // Otherwise we don't know if it could be writing to other memory. return Unknown; case ModRef: // Second reads and writes to the memory read from by First. // We don't have a way to express that. return Unknown; } } else if (const StoreInst *S = dyn_cast(First)) { // Be over-conservative with volatile for now. if (S->isVolatile()) return Unknown; // If we don't have a phi-translated address, use the actual one. if (!FirstPHITranslatedAddr) FirstPHITranslatedAddr = S->getPointerOperand(); // Forward this query to getModRefInfo. switch (getModRefInfo(Second, FirstPHITranslatedAddr, getTypeStoreSize(S->getValueOperand()->getType()))) { case NoModRef: // Second doesn't reference First's memory, so they're independent. return Independent; case Ref: // Second only reads from the memory written to by First. If it // also writes to any other memory, be conservative. if (Second->mayWriteToMemory()) return Unknown; // If it's loading the same size from the same address, we can // give a more precise result. if (const LoadInst *SecondL = dyn_cast(Second)) { // If we don't have a phi-translated address, use the actual one. if (!SecondPHITranslatedAddr) SecondPHITranslatedAddr = SecondL->getPointerOperand(); unsigned SSize = getTypeStoreSize(S->getValueOperand()->getType()); unsigned SecondLSize = getTypeStoreSize(SecondL->getType()); if (alias(FirstPHITranslatedAddr, SSize, SecondPHITranslatedAddr, SecondLSize) == MustAlias) { // If the store and the load are the same size, it's WriteThenRead. if (SSize == SecondLSize) return WriteThenRead; // If the load is smaller, it's only WriteThenReadSome. if (SSize > SecondLSize) return WriteThenReadSome; } } // Otherwise we don't know if it could be reading from other memory. return Unknown; case Mod: // Second only writes to the memory written to by First. If it // also reads from any other memory, be conservative. if (Second->mayReadFromMemory()) return Unknown; // If it's storing the same size to the same address, we can // give a more precise result. if (const StoreInst *SecondS = dyn_cast(Second)) { // If we don't have a phi-translated address, use the actual one. if (!SecondPHITranslatedAddr) SecondPHITranslatedAddr = SecondS->getPointerOperand(); unsigned SSize = getTypeStoreSize(S->getValueOperand()->getType()); unsigned SecondSSize = getTypeStoreSize(SecondS->getType()); if (alias(FirstPHITranslatedAddr, SSize, SecondPHITranslatedAddr, SecondSSize) == MustAlias) { // If the stores are the same size, it's WriteThenWrite. if (SSize == SecondSSize) return WriteThenWrite; // If the second store is larger, it's only WriteSomeThenWrite. if (SSize < SecondSSize) return WriteSomeThenWrite; } } // Otherwise we don't know if it could be writing to other memory. return Unknown; case ModRef: // Second reads and writes to the memory written to by First. // We don't have a way to express that. return Unknown; } } else if (const VAArgInst *V = dyn_cast(First)) { // If we don't have a phi-translated address, use the actual one. if (!FirstPHITranslatedAddr) FirstPHITranslatedAddr = V->getPointerOperand(); // Forward this query to getModRefInfo. if (getModRefInfo(Second, FirstPHITranslatedAddr, UnknownSize) == NoModRef) // Second doesn't reference First's memory, so they're independent. return Independent; } else if (ImmutableCallSite FirstCS = cast(First)) { assert(!FirstPHITranslatedAddr && !SecondPHITranslatedAddr && "PHI translation with calls not supported yet!"); // If both instructions are calls/invokes we can use the two-callsite // form of getModRefInfo. if (ImmutableCallSite SecondCS = cast(Second)) // getModRefInfo's arguments are backwards from intuition. switch (getModRefInfo(SecondCS, FirstCS)) { case NoModRef: // Second doesn't reference First's memory, so they're independent. return Independent; case Ref: // If they're both read-only, there's no dependence. if (FirstCS.onlyReadsMemory() && SecondCS.onlyReadsMemory()) return Independent; // Otherwise it's not obvious what we can do here. return Unknown; case Mod: // It's not obvious what we can do here. return Unknown; case ModRef: // I know, right? return Unknown; } } // For anything else, be conservative. return Unknown; } AliasAnalysis::ModRefBehavior AliasAnalysis::getIntrinsicModRefBehavior(unsigned iid) { #define GET_INTRINSIC_MODREF_BEHAVIOR #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_MODREF_BEHAVIOR } // AliasAnalysis destructor: DO NOT move this to the header file for // AliasAnalysis or else clients of the AliasAnalysis class may not depend on // the AliasAnalysis.o file in the current .a file, causing alias analysis // support to not be included in the tool correctly! // AliasAnalysis::~AliasAnalysis() {} /// InitializeAliasAnalysis - Subclasses must call this method to initialize the /// AliasAnalysis interface before any other methods are called. /// void AliasAnalysis::InitializeAliasAnalysis(Pass *P) { TD = P->getAnalysisIfAvailable(); AA = &P->getAnalysis(); } // getAnalysisUsage - All alias analysis implementations should invoke this // directly (using AliasAnalysis::getAnalysisUsage(AU)). void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); // All AA's chain } /// getTypeStoreSize - Return the TargetData store size for the given type, /// if known, or a conservative value otherwise. /// unsigned AliasAnalysis::getTypeStoreSize(const Type *Ty) { return TD ? TD->getTypeStoreSize(Ty) : ~0u; } /// canBasicBlockModify - Return true if it is possible for execution of the /// specified basic block to modify the value pointed to by Ptr. /// bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, const Value *Ptr, unsigned Size) { return canInstructionRangeModify(BB.front(), BB.back(), Ptr, Size); } /// canInstructionRangeModify - Return true if it is possible for the execution /// of the specified instructions to modify the value pointed to by Ptr. The /// instructions to consider are all of the instructions in the range of [I1,I2] /// INCLUSIVE. I1 and I2 must be in the same basic block. /// bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1, const Instruction &I2, const Value *Ptr, unsigned Size) { assert(I1.getParent() == I2.getParent() && "Instructions not in same basic block!"); BasicBlock::const_iterator I = &I1; BasicBlock::const_iterator E = &I2; ++E; // Convert from inclusive to exclusive range. for (; I != E; ++I) // Check every instruction in range if (getModRefInfo(I, Ptr, Size) & Mod) return true; return false; } /// isNoAliasCall - Return true if this pointer is returned by a noalias /// function. bool llvm::isNoAliasCall(const Value *V) { if (isa(V) || isa(V)) return ImmutableCallSite(cast(V)) .paramHasAttr(0, Attribute::NoAlias); return false; } /// isIdentifiedObject - Return true if this pointer refers to a distinct and /// identifiable object. This returns true for: /// Global Variables and Functions (but not Global Aliases) /// Allocas and Mallocs /// ByVal and NoAlias Arguments /// NoAlias returns /// bool llvm::isIdentifiedObject(const Value *V) { if (isa(V)) return true; if (isa(V) && !isa(V)) return true; if (isNoAliasCall(V)) return true; if (const Argument *A = dyn_cast(V)) return A->hasNoAliasAttr() || A->hasByValAttr(); return false; } // Because of the way .a files work, we must force the BasicAA implementation to // be pulled in if the AliasAnalysis classes are pulled in. Otherwise we run // the risk of AliasAnalysis being used, but the default implementation not // being linked into the tool that uses it. DEFINING_FILE_FOR(AliasAnalysis)