//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Loops should be simplified before this analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/BlockFrequencyInfoImpl.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::bfi_detail; #define DEBUG_TYPE "block-freq" //===----------------------------------------------------------------------===// // // UnsignedFloat implementation. // //===----------------------------------------------------------------------===// #ifndef _MSC_VER const int32_t UnsignedFloatBase::MaxExponent; const int32_t UnsignedFloatBase::MinExponent; #endif static void appendDigit(std::string &Str, unsigned D) { assert(D < 10); Str += '0' + D % 10; } static void appendNumber(std::string &Str, uint64_t N) { while (N) { appendDigit(Str, N % 10); N /= 10; } } static bool doesRoundUp(char Digit) { switch (Digit) { case '5': case '6': case '7': case '8': case '9': return true; default: return false; } } static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { assert(E >= UnsignedFloatBase::MinExponent); assert(E <= UnsignedFloatBase::MaxExponent); // Find a new E, but don't let it increase past MaxExponent. int LeadingZeros = UnsignedFloatBase::countLeadingZeros64(D); int NewE = std::min(UnsignedFloatBase::MaxExponent, E + 63 - LeadingZeros); int Shift = 63 - (NewE - E); assert(Shift <= LeadingZeros); assert(Shift == LeadingZeros || NewE == UnsignedFloatBase::MaxExponent); D <<= Shift; E = NewE; // Check for a denormal. unsigned AdjustedE = E + 16383; if (!(D >> 63)) { assert(E == UnsignedFloatBase::MaxExponent); AdjustedE = 0; } // Build the float and print it. uint64_t RawBits[2] = {D, AdjustedE}; APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits)); SmallVector Chars; Float.toString(Chars, Precision, 0); return std::string(Chars.begin(), Chars.end()); } static std::string stripTrailingZeros(const std::string &Float) { size_t NonZero = Float.find_last_not_of('0'); assert(NonZero != std::string::npos && "no . in floating point string"); if (Float[NonZero] == '.') ++NonZero; return Float.substr(0, NonZero + 1); } std::string UnsignedFloatBase::toString(uint64_t D, int16_t E, int Width, unsigned Precision) { if (!D) return "0.0"; // Canonicalize exponent and digits. uint64_t Above0 = 0; uint64_t Below0 = 0; uint64_t Extra = 0; int ExtraShift = 0; if (E == 0) { Above0 = D; } else if (E > 0) { if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { D <<= Shift; E -= Shift; if (!E) Above0 = D; } } else if (E > -64) { Above0 = D >> -E; Below0 = D << (64 + E); } else if (E > -120) { Below0 = D >> (-E - 64); Extra = D << (128 + E); ExtraShift = -64 - E; } // Fall back on APFloat for very small and very large numbers. if (!Above0 && !Below0) return toStringAPFloat(D, E, Precision); // Append the digits before the decimal. std::string Str; size_t DigitsOut = 0; if (Above0) { appendNumber(Str, Above0); DigitsOut = Str.size(); } else appendDigit(Str, 0); std::reverse(Str.begin(), Str.end()); // Return early if there's nothing after the decimal. if (!Below0) return Str + ".0"; // Append the decimal and beyond. Str += '.'; uint64_t Error = UINT64_C(1) << (64 - Width); // We need to shift Below0 to the right to make space for calculating // digits. Save the precision we're losing in Extra. Extra = (Below0 & 0xf) << 56 | (Extra >> 8); Below0 >>= 4; size_t SinceDot = 0; size_t AfterDot = Str.size(); do { if (ExtraShift) { --ExtraShift; Error *= 5; } else Error *= 10; Below0 *= 10; Extra *= 10; Below0 += (Extra >> 60); Extra = Extra & (UINT64_MAX >> 4); appendDigit(Str, Below0 >> 60); Below0 = Below0 & (UINT64_MAX >> 4); if (DigitsOut || Str.back() != '0') ++DigitsOut; ++SinceDot; } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && (!Precision || DigitsOut <= Precision || SinceDot < 2)); // Return early for maximum precision. if (!Precision || DigitsOut <= Precision) return stripTrailingZeros(Str); // Find where to truncate. size_t Truncate = std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); // Check if there's anything to truncate. if (Truncate >= Str.size()) return stripTrailingZeros(Str); bool Carry = doesRoundUp(Str[Truncate]); if (!Carry) return stripTrailingZeros(Str.substr(0, Truncate)); // Round with the first truncated digit. for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); I != E; ++I) { if (*I == '.') continue; if (*I == '9') { *I = '0'; continue; } ++*I; Carry = false; break; } // Add "1" in front if we still need to carry. return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); } raw_ostream &UnsignedFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E, int Width, unsigned Precision) { return OS << toString(D, E, Width, Precision); } void UnsignedFloatBase::dump(uint64_t D, int16_t E, int Width) { print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E << "]"; } static std::pair getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) { if (ShouldRound) if (!++N) // Rounding caused an overflow. return std::make_pair(UINT64_C(1), Shift + 64); return std::make_pair(N, Shift); } std::pair UnsignedFloatBase::divide64(uint64_t Dividend, uint64_t Divisor) { // Input should be sanitized. assert(Divisor); assert(Dividend); // Minimize size of divisor. int16_t Shift = 0; if (int Zeros = countTrailingZeros(Divisor)) { Shift -= Zeros; Divisor >>= Zeros; } // Check for powers of two. if (Divisor == 1) return std::make_pair(Dividend, Shift); // Maximize size of dividend. if (int Zeros = countLeadingZeros64(Dividend)) { Shift -= Zeros; Dividend <<= Zeros; } // Start with the result of a divide. uint64_t Quotient = Dividend / Divisor; Dividend %= Divisor; // Continue building the quotient with long division. // // TODO: continue with largers digits. while (!(Quotient >> 63) && Dividend) { // Shift Dividend, and check for overflow. bool IsOverflow = Dividend >> 63; Dividend <<= 1; --Shift; // Divide. bool DoesDivide = IsOverflow || Divisor <= Dividend; Quotient = (Quotient << 1) | uint64_t(DoesDivide); Dividend -= DoesDivide ? Divisor : 0; } // Round. if (Dividend >= getHalf(Divisor)) if (!++Quotient) // Rounding caused an overflow in Quotient. return std::make_pair(UINT64_C(1), Shift + 64); return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift); } std::pair UnsignedFloatBase::multiply64(uint64_t L, uint64_t R) { // Separate into two 32-bit digits (U.L). uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX; // Compute cross products. uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; // Sum into two 64-bit digits. uint64_t Upper = P1, Lower = P4; auto addWithCarry = [&](uint64_t N) { uint64_t NewLower = Lower + (N << 32); Upper += (N >> 32) + (NewLower < Lower); Lower = NewLower; }; addWithCarry(P2); addWithCarry(P3); // Check whether the upper digit is empty. if (!Upper) return std::make_pair(Lower, 0); // Shift as little as possible to maximize precision. unsigned LeadingZeros = countLeadingZeros64(Upper); int16_t Shift = 64 - LeadingZeros; if (LeadingZeros) Upper = Upper << LeadingZeros | Lower >> Shift; bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1)); return getRoundedFloat(Upper, ShouldRound, Shift); } //===----------------------------------------------------------------------===// // // BlockMass implementation. // //===----------------------------------------------------------------------===// UnsignedFloat BlockMass::toFloat() const { if (isFull()) return UnsignedFloat(1, 0); return UnsignedFloat(getMass() + 1, -64); } void BlockMass::dump() const { print(dbgs()); } static char getHexDigit(int N) { assert(N < 16); if (N < 10) return '0' + N; return 'a' + N - 10; } raw_ostream &BlockMass::print(raw_ostream &OS) const { for (int Digits = 0; Digits < 16; ++Digits) OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); return OS; } //===----------------------------------------------------------------------===// // // BlockFrequencyInfoImpl implementation. // //===----------------------------------------------------------------------===// namespace { typedef BlockFrequencyInfoImplBase::BlockNode BlockNode; typedef BlockFrequencyInfoImplBase::Distribution Distribution; typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList; typedef BlockFrequencyInfoImplBase::Float Float; typedef BlockFrequencyInfoImplBase::LoopData LoopData; typedef BlockFrequencyInfoImplBase::Weight Weight; typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData; /// \brief Dithering mass distributer. /// /// This class splits up a single mass into portions by weight, dithering to /// spread out error. No mass is lost. The dithering precision depends on the /// precision of the product of \a BlockMass and \a BranchProbability. /// /// The distribution algorithm follows. /// /// 1. Initialize by saving the sum of the weights in \a RemWeight and the /// mass to distribute in \a RemMass. /// /// 2. For each portion: /// /// 1. Construct a branch probability, P, as the portion's weight divided /// by the current value of \a RemWeight. /// 2. Calculate the portion's mass as \a RemMass times P. /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting /// the current portion's weight and mass. struct DitheringDistributer { uint32_t RemWeight; BlockMass RemMass; DitheringDistributer(Distribution &Dist, const BlockMass &Mass); BlockMass takeMass(uint32_t Weight); }; } DitheringDistributer::DitheringDistributer(Distribution &Dist, const BlockMass &Mass) { Dist.normalize(); RemWeight = Dist.Total; RemMass = Mass; } BlockMass DitheringDistributer::takeMass(uint32_t Weight) { assert(Weight && "invalid weight"); assert(Weight <= RemWeight); BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); // Decrement totals (dither). RemWeight -= Weight; RemMass -= Mass; return Mass; } void Distribution::add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type) { assert(Amount && "invalid weight of 0"); uint64_t NewTotal = Total + Amount; // Check for overflow. It should be impossible to overflow twice. bool IsOverflow = NewTotal < Total; assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); DidOverflow |= IsOverflow; // Update the total. Total = NewTotal; // Save the weight. Weight W; W.TargetNode = Node; W.Amount = Amount; W.Type = Type; Weights.push_back(W); } static void combineWeight(Weight &W, const Weight &OtherW) { assert(OtherW.TargetNode.isValid()); if (!W.Amount) { W = OtherW; return; } assert(W.Type == OtherW.Type); assert(W.TargetNode == OtherW.TargetNode); assert(W.Amount < W.Amount + OtherW.Amount && "Unexpected overflow"); W.Amount += OtherW.Amount; } static void combineWeightsBySorting(WeightList &Weights) { // Sort so edges to the same node are adjacent. std::sort(Weights.begin(), Weights.end(), [](const Weight &L, const Weight &R) { return L.TargetNode < R.TargetNode; }); // Combine adjacent edges. WeightList::iterator O = Weights.begin(); for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; ++O, (I = L)) { *O = *I; // Find the adjacent weights to the same node. for (++L; L != E && I->TargetNode == L->TargetNode; ++L) combineWeight(*O, *L); } // Erase extra entries. Weights.erase(O, Weights.end()); return; } static void combineWeightsByHashing(WeightList &Weights) { // Collect weights into a DenseMap. typedef DenseMap HashTable; HashTable Combined(NextPowerOf2(2 * Weights.size())); for (const Weight &W : Weights) combineWeight(Combined[W.TargetNode.Index], W); // Check whether anything changed. if (Weights.size() == Combined.size()) return; // Fill in the new weights. Weights.clear(); Weights.reserve(Combined.size()); for (const auto &I : Combined) Weights.push_back(I.second); } static void combineWeights(WeightList &Weights) { // Use a hash table for many successors to keep this linear. if (Weights.size() > 128) { combineWeightsByHashing(Weights); return; } combineWeightsBySorting(Weights); } static uint64_t shiftRightAndRound(uint64_t N, int Shift) { assert(Shift >= 0); assert(Shift < 64); if (!Shift) return N; return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); } void Distribution::normalize() { // Early exit for termination nodes. if (Weights.empty()) return; // Only bother if there are multiple successors. if (Weights.size() > 1) combineWeights(Weights); // Early exit when combined into a single successor. if (Weights.size() == 1) { Total = 1; Weights.front().Amount = 1; return; } // Determine how much to shift right so that the total fits into 32-bits. // // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1 // for each weight can cause a 32-bit overflow. int Shift = 0; if (DidOverflow) Shift = 33; else if (Total > UINT32_MAX) Shift = 33 - countLeadingZeros(Total); // Early exit if nothing needs to be scaled. if (!Shift) return; // Recompute the total through accumulation (rather than shifting it) so that // it's accurate after shifting. Total = 0; // Sum the weights to each node and shift right if necessary. for (Weight &W : Weights) { // Scale down below UINT32_MAX. Since Shift is larger than necessary, we // can round here without concern about overflow. assert(W.TargetNode.isValid()); W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); assert(W.Amount <= UINT32_MAX); // Update the total. Total += W.Amount; } assert(Total <= UINT32_MAX); } void BlockFrequencyInfoImplBase::clear() { // Swap with a default-constructed std::vector, since std::vector<>::clear() // does not actually clear heap storage. std::vector().swap(Freqs); std::vector().swap(Working); Loops.clear(); } /// \brief Clear all memory not needed downstream. /// /// Releases all memory not used downstream. In particular, saves Freqs. static void cleanup(BlockFrequencyInfoImplBase &BFI) { std::vector SavedFreqs(std::move(BFI.Freqs)); BFI.clear(); BFI.Freqs = std::move(SavedFreqs); } bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, const LoopData *OuterLoop, const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight) { if (!Weight) Weight = 1; auto isLoopHeader = [&OuterLoop](const BlockNode &Node) { return OuterLoop && OuterLoop->isHeader(Node); }; BlockNode Resolved = Working[Succ.Index].getResolvedNode(); #ifndef NDEBUG auto debugSuccessor = [&](const char *Type) { dbgs() << " =>" << " [" << Type << "] weight = " << Weight; if (!isLoopHeader(Resolved)) dbgs() << ", succ = " << getBlockName(Succ); if (Resolved != Succ) dbgs() << ", resolved = " << getBlockName(Resolved); dbgs() << "\n"; }; (void)debugSuccessor; #endif if (isLoopHeader(Resolved)) { DEBUG(debugSuccessor("backedge")); Dist.addBackedge(OuterLoop->getHeader(), Weight); return true; } if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { DEBUG(debugSuccessor(" exit ")); Dist.addExit(Resolved, Weight); return true; } if (Resolved < Pred) { if (!isLoopHeader(Pred)) { // If OuterLoop is an irreducible loop, we can't actually handle this. assert((!OuterLoop || !OuterLoop->isIrreducible()) && "unhandled irreducible control flow"); // Irreducible backedge. Abort. DEBUG(debugSuccessor("abort!!!")); return false; } // If "Pred" is a loop header, then this isn't really a backedge; rather, // OuterLoop must be irreducible. These false backedges can come only from // secondary loop headers. assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && "unhandled irreducible control flow"); } DEBUG(debugSuccessor(" local ")); Dist.addLocal(Resolved, Weight); return true; } bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { // Copy the exit map into Dist. for (const auto &I : Loop.Exits) if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, I.second.getMass())) // Irreducible backedge. return false; return true; } /// \brief Get the maximum allowed loop scale. /// /// Gives the maximum number of estimated iterations allowed for a loop. Very /// large numbers cause problems downstream (even within 64-bits). static Float getMaxLoopScale() { return Float(1, 12); } /// \brief Compute the loop scale for a loop. void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { // Compute loop scale. DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n"); // LoopScale == 1 / ExitMass // ExitMass == HeadMass - BackedgeMass BlockMass ExitMass = BlockMass::getFull() - Loop.BackedgeMass; // Block scale stores the inverse of the scale. Loop.Scale = ExitMass.toFloat().inverse(); DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull() << " - " << Loop.BackedgeMass << ")\n" << " - scale = " << Loop.Scale << "\n"); if (Loop.Scale > getMaxLoopScale()) { Loop.Scale = getMaxLoopScale(); DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n"); } } /// \brief Package up a loop. void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n"); // Clear the subloop exits to prevent quadratic memory usage. for (const BlockNode &M : Loop.Nodes) { if (auto *Loop = Working[M.Index].getPackagedLoop()) Loop->Exits.clear(); DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); } Loop.IsPackaged = true; } void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, LoopData *OuterLoop, Distribution &Dist) { BlockMass Mass = Working[Source.Index].getMass(); DEBUG(dbgs() << " => mass: " << Mass << "\n"); // Distribute mass to successors as laid out in Dist. DitheringDistributer D(Dist, Mass); #ifndef NDEBUG auto debugAssign = [&](const BlockNode &T, const BlockMass &M, const char *Desc) { dbgs() << " => assign " << M << " (" << D.RemMass << ")"; if (Desc) dbgs() << " [" << Desc << "]"; if (T.isValid()) dbgs() << " to " << getBlockName(T); dbgs() << "\n"; }; (void)debugAssign; #endif for (const Weight &W : Dist.Weights) { // Check for a local edge (non-backedge and non-exit). BlockMass Taken = D.takeMass(W.Amount); if (W.Type == Weight::Local) { Working[W.TargetNode.Index].getMass() += Taken; DEBUG(debugAssign(W.TargetNode, Taken, nullptr)); continue; } // Backedges and exits only make sense if we're processing a loop. assert(OuterLoop && "backedge or exit outside of loop"); // Check for a backedge. if (W.Type == Weight::Backedge) { OuterLoop->BackedgeMass += Taken; DEBUG(debugAssign(BlockNode(), Taken, "back")); continue; } // This must be an exit. assert(W.Type == Weight::Exit); OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken)); DEBUG(debugAssign(W.TargetNode, Taken, "exit")); } } static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, const Float &Min, const Float &Max) { // Scale the Factor to a size that creates integers. Ideally, integers would // be scaled so that Max == UINT64_MAX so that they can be best // differentiated. However, the register allocator currently deals poorly // with large numbers. Instead, push Min up a little from 1 to give some // room to differentiate small, unequal numbers. // // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max. Float ScalingFactor = Min.inverse(); if ((Max / Min).lg() < 60) ScalingFactor <<= 3; // Translate the floats to integers. DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max << ", factor = " << ScalingFactor << "\n"); for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor; BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt()); DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " << BFI.Freqs[Index].Floating << ", scaled = " << Scaled << ", int = " << BFI.Freqs[Index].Integer << "\n"); } } /// \brief Unwrap a loop package. /// /// Visits all the members of a loop, adjusting their BlockData according to /// the loop's pseudo-node. static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale << "\n"); Loop.Scale *= Loop.Mass.toFloat(); Loop.IsPackaged = false; DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n"); // Propagate the head scale through the loop. Since members are visited in // RPO, the head scale will be updated by the loop scale first, and then the // final head scale will be used for updated the rest of the members. for (const BlockNode &N : Loop.Nodes) { const auto &Working = BFI.Working[N.Index]; Float &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale : BFI.Freqs[N.Index].Floating; Float New = Loop.Scale * F; DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New << "\n"); F = New; } } void BlockFrequencyInfoImplBase::unwrapLoops() { // Set initial frequencies from loop-local masses. for (size_t Index = 0; Index < Working.size(); ++Index) Freqs[Index].Floating = Working[Index].Mass.toFloat(); for (LoopData &Loop : Loops) unwrapLoop(*this, Loop); } void BlockFrequencyInfoImplBase::finalizeMetrics() { // Unwrap loop packages in reverse post-order, tracking min and max // frequencies. auto Min = Float::getLargest(); auto Max = Float::getZero(); for (size_t Index = 0; Index < Working.size(); ++Index) { // Update min/max scale. Min = std::min(Min, Freqs[Index].Floating); Max = std::max(Max, Freqs[Index].Floating); } // Convert to integers. convertFloatingToInteger(*this, Min, Max); // Clean up data structures. cleanup(*this); // Print out the final stats. DEBUG(dump()); } BlockFrequency BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { if (!Node.isValid()) return 0; return Freqs[Node.Index].Integer; } Float BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { if (!Node.isValid()) return Float::getZero(); return Freqs[Node.Index].Floating; } std::string BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { return std::string(); } std::string BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*"); } raw_ostream & BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, const BlockNode &Node) const { return OS << getFloatingBlockFreq(Node); } raw_ostream & BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, const BlockFrequency &Freq) const { Float Block(Freq.getFrequency(), 0); Float Entry(getEntryFreq(), 0); return OS << Block / Entry; } void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { Start = OuterLoop.getHeader(); Nodes.reserve(OuterLoop.Nodes.size()); for (auto N : OuterLoop.Nodes) addNode(N); indexNodes(); } void IrreducibleGraph::addNodesInFunction() { Start = 0; for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) if (!BFI.Working[Index].isPackaged()) addNode(Index); indexNodes(); } void IrreducibleGraph::indexNodes() { for (auto &I : Nodes) Lookup[I.Node.Index] = &I; } void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, const BFIBase::LoopData *OuterLoop) { if (OuterLoop && OuterLoop->isHeader(Succ)) return; auto L = Lookup.find(Succ.Index); if (L == Lookup.end()) return; IrrNode &SuccIrr = *L->second; Irr.Edges.push_back(&SuccIrr); SuccIrr.Edges.push_front(&Irr); ++SuccIrr.NumIn; } namespace llvm { template <> struct GraphTraits { typedef bfi_detail::IrreducibleGraph GraphT; typedef const GraphT::IrrNode NodeType; typedef GraphT::IrrNode::iterator ChildIteratorType; static const NodeType *getEntryNode(const GraphT &G) { return G.StartIrr; } static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); } static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); } }; } /// \brief Find extra irreducible headers. /// /// Find entry blocks and other blocks with backedges, which exist when \c G /// contains irreducible sub-SCCs. static void findIrreducibleHeaders( const BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, const std::vector &SCC, LoopData::NodeList &Headers, LoopData::NodeList &Others) { // Map from nodes in the SCC to whether it's an entry block. SmallDenseMap InSCC; // InSCC also acts the set of nodes in the graph. Seed it. for (const auto *I : SCC) InSCC[I] = false; for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { auto &Irr = *I->first; for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { if (InSCC.count(P)) continue; // This is an entry block. I->second = true; Headers.push_back(Irr.Node); DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) << "\n"); break; } } assert(Headers.size() >= 2 && "Should be irreducible"); if (Headers.size() == InSCC.size()) { // Every block is a header. std::sort(Headers.begin(), Headers.end()); return; } // Look for extra headers from irreducible sub-SCCs. for (const auto &I : InSCC) { // Entry blocks are already headers. if (I.second) continue; auto &Irr = *I.first; for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { // Skip forward edges. if (P->Node < Irr.Node) continue; // Skip predecessors from entry blocks. These can have inverted // ordering. if (InSCC.lookup(P)) continue; // Store the extra header. Headers.push_back(Irr.Node); DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) << "\n"); break; } if (Headers.back() == Irr.Node) // Added this as a header. continue; // This is not a header. Others.push_back(Irr.Node); DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n"); } std::sort(Headers.begin(), Headers.end()); std::sort(Others.begin(), Others.end()); } static void createIrreducibleLoop( BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, LoopData *OuterLoop, std::list::iterator Insert, const std::vector &SCC) { // Translate the SCC into RPO. DEBUG(dbgs() << " - found-scc\n"); LoopData::NodeList Headers; LoopData::NodeList Others; findIrreducibleHeaders(BFI, G, SCC, Headers, Others); auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(), Headers.end(), Others.begin(), Others.end()); // Update loop hierarchy. for (const auto &N : Loop->Nodes) if (BFI.Working[N.Index].isLoopHeader()) BFI.Working[N.Index].Loop->Parent = &*Loop; else BFI.Working[N.Index].Loop = &*Loop; } iterator_range::iterator> BlockFrequencyInfoImplBase::analyzeIrreducible( const IrreducibleGraph &G, LoopData *OuterLoop, std::list::iterator Insert) { assert((OuterLoop == nullptr) == (Insert == Loops.begin())); auto Prev = OuterLoop ? std::prev(Insert) : Loops.end(); for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { if (I->size() < 2) continue; // Translate the SCC into RPO. createIrreducibleLoop(*this, G, OuterLoop, Insert, *I); } if (OuterLoop) return make_range(std::next(Prev), Insert); return make_range(Loops.begin(), Insert); } void BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { OuterLoop.Exits.clear(); OuterLoop.BackedgeMass = BlockMass::getEmpty(); auto O = OuterLoop.Nodes.begin() + 1; for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) if (!Working[I->Index].isPackaged()) *O++ = *I; OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end()); }