//===- IPModRef.cpp - Compute IP Mod/Ref information ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // See high-level comments in IPModRef.h // //===----------------------------------------------------------------------===// #include "IPModRef.h" #include "llvm/Analysis/DataStructure/DataStructure.h" #include "llvm/Analysis/DataStructure/DSGraph.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include namespace llvm { //---------------------------------------------------------------------------- // Private constants and data //---------------------------------------------------------------------------- static RegisterAnalysis Z("ipmodref", "Interprocedural mod/ref analysis"); //---------------------------------------------------------------------------- // class ModRefInfo //---------------------------------------------------------------------------- void ModRefInfo::print(std::ostream &O, const std::string& sprefix) const { O << sprefix << "Modified nodes = " << modNodeSet; O << sprefix << "Referenced nodes = " << refNodeSet; } void ModRefInfo::dump() const { print(std::cerr); } //---------------------------------------------------------------------------- // class FunctionModRefInfo //---------------------------------------------------------------------------- // This constructor computes a node numbering for the TD graph. // FunctionModRefInfo::FunctionModRefInfo(const Function& func, IPModRef& ipmro, DSGraph* tdgClone) : F(func), IPModRefObj(ipmro), funcTDGraph(tdgClone), funcModRefInfo(tdgClone->getGraphSize()) { unsigned i = 0; for (DSGraph::node_iterator NI = funcTDGraph->node_begin(), E = funcTDGraph->node_end(); NI != E; ++NI) NodeIds[*NI] = i++; } FunctionModRefInfo::~FunctionModRefInfo() { for(std::map::iterator I=callSiteModRefInfo.begin(), E=callSiteModRefInfo.end(); I != E; ++I) delete(I->second); // Empty map just to make problems easier to track down callSiteModRefInfo.clear(); delete funcTDGraph; } unsigned FunctionModRefInfo::getNodeId(const Value* value) const { return getNodeId(funcTDGraph->getNodeForValue(const_cast(value)) .getNode()); } // Compute Mod/Ref bit vectors for the entire function. // These are simply copies of the Read/Write flags from the nodes of // the top-down DS graph. // void FunctionModRefInfo::computeModRef(const Function &func) { // Mark all nodes in the graph that are marked MOD as being mod // and all those marked REF as being ref. unsigned i = 0; for (DSGraph::node_iterator NI = funcTDGraph->node_begin(), E = funcTDGraph->node_end(); NI != E; ++NI, ++i) { if ((*NI)->isModified()) funcModRefInfo.setNodeIsMod(i); if ((*NI)->isRead()) funcModRefInfo.setNodeIsRef(i); } // Compute the Mod/Ref info for all call sites within the function. // The call sites are recorded in the TD graph. const std::vector& callSites = funcTDGraph->getFunctionCalls(); for (unsigned i = 0, N = callSites.size(); i < N; ++i) computeModRef(callSites[i].getCallSite()); } // ResolveCallSiteModRefInfo - This method performs the following actions: // // 1. It clones the top-down graph for the current function // 2. It clears all of the mod/ref bits in the cloned graph // 3. It then merges the bottom-up graph(s) for the specified call-site into // the clone (bringing new mod/ref bits). // 4. It returns the clone, and a mapping of nodes from the original TDGraph to // the cloned graph with Mod/Ref info for the callsite. // // NOTE: Because this clones a dsgraph and returns it, the caller is responsible // for deleting the returned graph! // NOTE: This method may return a null pointer if it is unable to determine the // requested information (because the call site calls an external // function or we cannot determine the complete set of functions invoked). // DSGraph* FunctionModRefInfo::ResolveCallSiteModRefInfo(CallSite CS, hash_map &NodeMap) { // Step #0: Quick check if we are going to fail anyway: avoid // all the graph cloning and map copying in steps #1 and #2. // if (const Function *F = CS.getCalledFunction()) { if (F->isExternal()) return 0; // We cannot compute Mod/Ref info for this callsite... } else { // Eventually, should check here if any callee is external. // For now we are not handling this case anyway. std::cerr << "IP Mod/Ref indirect call not implemented yet: " << "Being conservative\n"; return 0; // We cannot compute Mod/Ref info for this callsite... } // Step #1: Clone the top-down graph... DSGraph *Result = new DSGraph(*funcTDGraph, NodeMap); // Step #2: Clear Mod/Ref information... Result->maskNodeTypes(~(DSNode::Modified | DSNode::Read)); // Step #3: clone the bottom up graphs for the callees into the caller graph if (Function *F = CS.getCalledFunction()) { assert(!F->isExternal()); // Build up a DSCallSite for our invocation point here... // If the call returns a value, make sure to merge the nodes... DSNodeHandle RetVal; if (DS::isPointerType(CS.getInstruction()->getType())) RetVal = Result->getNodeForValue(CS.getInstruction()); // Populate the arguments list... std::vector Args; for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) if (DS::isPointerType((*I)->getType())) Args.push_back(Result->getNodeForValue(*I)); // Build the call site... DSCallSite NCS(CS, RetVal, F, Args); // Perform the merging now of the graph for the callee, which will // come with mod/ref bits set... Result->mergeInGraph(NCS, *F, IPModRefObj.getBUDSGraph(*F), DSGraph::StripAllocaBit | DSGraph::DontCloneCallNodes | DSGraph::DontCloneAuxCallNodes); } else assert(0 && "See error message"); // Remove dead nodes aggressively to match the caller's original graph. Result->removeDeadNodes(DSGraph::KeepUnreachableGlobals); // Step #4: Return the clone + the mapping (by ref) return Result; } // Compute Mod/Ref bit vectors for a single call site. // These are copies of the Read/Write flags from the nodes of // the graph produced by clearing all flags in the caller's TD graph // and then inlining the callee's BU graph into the caller's TD graph. // void FunctionModRefInfo::computeModRef(CallSite CS) { // Allocate the mod/ref info for the call site. Bits automatically cleared. ModRefInfo* callModRefInfo = new ModRefInfo(funcTDGraph->getGraphSize()); callSiteModRefInfo[CS.getInstruction()] = callModRefInfo; // Get a copy of the graph for the callee with the callee inlined hash_map NodeMap; DSGraph* csgp = ResolveCallSiteModRefInfo(CS, NodeMap); if (!csgp) { // Callee's side effects are unknown: mark all nodes Mod and Ref. // Eventually this should only mark nodes visible to the callee, i.e., // exclude stack variables not reachable from any outgoing argument // or any global. callModRefInfo->getModSet().set(); callModRefInfo->getRefSet().set(); return; } // For all nodes in the graph, extract the mod/ref information for (DSGraph::node_iterator NI = funcTDGraph->node_begin(), E = funcTDGraph->node_end(); NI != E; ++NI) { DSNode* csgNode = NodeMap[*NI].getNode(); assert(csgNode && "Inlined and original graphs do not correspond!"); if (csgNode->isModified()) callModRefInfo->setNodeIsMod(getNodeId(*NI)); if (csgNode->isRead()) callModRefInfo->setNodeIsRef(getNodeId(*NI)); } // Drop nodemap before we delete the graph... NodeMap.clear(); delete csgp; } class DSGraphPrintHelper { const DSGraph& tdGraph; std::vector > knownValues; // identifiable objects public: /*ctor*/ DSGraphPrintHelper(const FunctionModRefInfo& fmrInfo) : tdGraph(fmrInfo.getFuncGraph()) { knownValues.resize(tdGraph.getGraphSize()); // For every identifiable value, save Value pointer in knownValues[i] for (hash_map::const_iterator I = tdGraph.getScalarMap().begin(), E = tdGraph.getScalarMap().end(); I != E; ++I) if (isa(I->first) || isa(I->first) || isa(I->first) || isa(I->first) || isa(I->first)) { unsigned nodeId = fmrInfo.getNodeId(I->second.getNode()); knownValues[nodeId].push_back(I->first); } } void printValuesInBitVec(std::ostream &O, const BitSetVector& bv) const { assert(bv.size() == knownValues.size()); if (bv.none()) { // No bits are set: just say so and return O << "\tNONE.\n"; return; } if (bv.all()) { // All bits are set: just say so and return O << "\tALL GRAPH NODES.\n"; return; } for (unsigned i=0, N=bv.size(); i < N; ++i) if (bv.test(i)) { O << "\tNode# " << i << " : "; if (! knownValues[i].empty()) for (unsigned j=0, NV=knownValues[i].size(); j < NV; j++) { const Value* V = knownValues[i][j]; if (isa(V)) O << "(Global) "; else if (isa(V)) O << "(Target of FormalParm) "; else if (isa(V)) O << "(Target of LoadInst ) "; else if (isa(V)) O << "(Target of AllocaInst) "; else if (isa(V)) O << "(Target of MallocInst) "; if (V->hasName()) O << V->getName(); else if (isa(V)) O << *V; else O << "(Value*) 0x" << (void*) V; O << std::string((j < NV-1)? "; " : "\n"); } #if 0 else tdGraph.getNodes()[i]->print(O, /*graph*/ NULL); #endif } } }; // Print the results of the pass. // Currently this just prints bit-vectors and is not very readable. // void FunctionModRefInfo::print(std::ostream &O) const { DSGraphPrintHelper DPH(*this); O << "========== Mod/ref information for function " << F.getName() << "========== \n\n"; // First: Print Globals and Locals modified anywhere in the function. // O << " -----Mod/Ref in the body of function " << F.getName()<< ":\n"; O << " --Objects modified in the function body:\n"; DPH.printValuesInBitVec(O, funcModRefInfo.getModSet()); O << " --Objects referenced in the function body:\n"; DPH.printValuesInBitVec(O, funcModRefInfo.getRefSet()); O << " --Mod and Ref vectors for the nodes listed above:\n"; funcModRefInfo.print(O, "\t"); O << "\n"; // Second: Print Globals and Locals modified at each call site in function // for (std::map::const_iterator CI = callSiteModRefInfo.begin(), CE = callSiteModRefInfo.end(); CI != CE; ++CI) { O << " ----Mod/Ref information for call site\n" << *CI->first; O << " --Objects modified at call site:\n"; DPH.printValuesInBitVec(O, CI->second->getModSet()); O << " --Objects referenced at call site:\n"; DPH.printValuesInBitVec(O, CI->second->getRefSet()); O << " --Mod and Ref vectors for the nodes listed above:\n"; CI->second->print(O, "\t"); O << "\n"; } O << "\n"; } void FunctionModRefInfo::dump() const { print(std::cerr); } //---------------------------------------------------------------------------- // class IPModRef: An interprocedural pass that computes IP Mod/Ref info. //---------------------------------------------------------------------------- // Free the FunctionModRefInfo objects cached in funcToModRefInfoMap. // void IPModRef::releaseMemory() { for(std::map::iterator I=funcToModRefInfoMap.begin(), E=funcToModRefInfoMap.end(); I != E; ++I) delete(I->second); // Clear map so memory is not re-released if we are called again funcToModRefInfoMap.clear(); } // Run the "interprocedural" pass on each function. This needs to do // NO real interprocedural work because all that has been done the // data structure analysis. // bool IPModRef::runOnModule(Module &theModule) { M = &theModule; for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) if (! FI->isExternal()) getFuncInfo(*FI, /*computeIfMissing*/ true); return true; } FunctionModRefInfo& IPModRef::getFuncInfo(const Function& func, bool computeIfMissing) { FunctionModRefInfo*& funcInfo = funcToModRefInfoMap[&func]; assert (funcInfo != NULL || computeIfMissing); if (funcInfo == NULL) { // Create a new FunctionModRefInfo object. // Clone the top-down graph and remove any dead nodes first, because // otherwise original and merged graphs will not match. // The memory for this graph clone will be freed by FunctionModRefInfo. DSGraph* funcTDGraph = new DSGraph(getAnalysis().getDSGraph(func)); funcTDGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals); funcInfo = new FunctionModRefInfo(func, *this, funcTDGraph); //auto-insert funcInfo->computeModRef(func); // computes the mod/ref info } return *funcInfo; } /// getBUDSGraph - This method returns the BU data structure graph for F through /// the use of the BUDataStructures object. /// const DSGraph &IPModRef::getBUDSGraph(const Function &F) { return getAnalysis().getDSGraph(F); } // getAnalysisUsage - This pass requires top-down data structure graphs. // It modifies nothing. // void IPModRef::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } void IPModRef::print(std::ostream &O) const { O << "\nRESULTS OF INTERPROCEDURAL MOD/REF ANALYSIS:\n\n"; for (std::map::const_iterator mapI = funcToModRefInfoMap.begin(), mapE = funcToModRefInfoMap.end(); mapI != mapE; ++mapI) mapI->second->print(O); O << "\n"; } void IPModRef::dump() const { print(std::cerr); } } // End llvm namespace