//===- IntervalPartition.cpp - Interval Partition module code -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the definition of the IntervalPartition class, which // calculates and represent the interval partition of a function. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/IntervalIterator.h" using namespace llvm; char IntervalPartition::ID = 0; INITIALIZE_PASS(IntervalPartition, "intervals", "Interval Partition Construction", true, true) //===----------------------------------------------------------------------===// // IntervalPartition Implementation //===----------------------------------------------------------------------===// // releaseMemory - Reset state back to before function was analyzed void IntervalPartition::releaseMemory() { for (unsigned i = 0, e = Intervals.size(); i != e; ++i) delete Intervals[i]; IntervalMap.clear(); Intervals.clear(); RootInterval = nullptr; } void IntervalPartition::print(raw_ostream &O, const Module*) const { for(unsigned i = 0, e = Intervals.size(); i != e; ++i) Intervals[i]->print(O); } // addIntervalToPartition - Add an interval to the internal list of intervals, // and then add mappings from all of the basic blocks in the interval to the // interval itself (in the IntervalMap). // void IntervalPartition::addIntervalToPartition(Interval *I) { Intervals.push_back(I); // Add mappings for all of the basic blocks in I to the IntervalPartition for (Interval::node_iterator It = I->Nodes.begin(), End = I->Nodes.end(); It != End; ++It) IntervalMap.insert(std::make_pair(*It, I)); } // updatePredecessors - Interval generation only sets the successor fields of // the interval data structures. After interval generation is complete, // run through all of the intervals and propagate successor info as // predecessor info. // void IntervalPartition::updatePredecessors(Interval *Int) { BasicBlock *Header = Int->getHeaderNode(); for (Interval::succ_iterator I = Int->Successors.begin(), E = Int->Successors.end(); I != E; ++I) getBlockInterval(*I)->Predecessors.push_back(Header); } // IntervalPartition ctor - Build the first level interval partition for the // specified function... // bool IntervalPartition::runOnFunction(Function &F) { // Pass false to intervals_begin because we take ownership of it's memory function_interval_iterator I = intervals_begin(&F, false); assert(I != intervals_end(&F) && "No intervals in function!?!?!"); addIntervalToPartition(RootInterval = *I); ++I; // After the first one... // Add the rest of the intervals to the partition. for (function_interval_iterator E = intervals_end(&F); I != E; ++I) addIntervalToPartition(*I); // Now that we know all of the successor information, propagate this to the // predecessors for each block. for (unsigned i = 0, e = Intervals.size(); i != e; ++i) updatePredecessors(Intervals[i]); return false; } // IntervalPartition ctor - Build a reduced interval partition from an // existing interval graph. This takes an additional boolean parameter to // distinguish it from a copy constructor. Always pass in false for now. // IntervalPartition::IntervalPartition(IntervalPartition &IP, bool) : FunctionPass(ID) { assert(IP.getRootInterval() && "Cannot operate on empty IntervalPartitions!"); // Pass false to intervals_begin because we take ownership of it's memory interval_part_interval_iterator I = intervals_begin(IP, false); assert(I != intervals_end(IP) && "No intervals in interval partition!?!?!"); addIntervalToPartition(RootInterval = *I); ++I; // After the first one... // Add the rest of the intervals to the partition. for (interval_part_interval_iterator E = intervals_end(IP); I != E; ++I) addIntervalToPartition(*I); // Now that we know all of the successor information, propagate this to the // predecessors for each block. for (unsigned i = 0, e = Intervals.size(); i != e; ++i) updatePredecessors(Intervals[i]); }