//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static void findCallees( SmallVectorImpl &Worklist, SmallPtrSetImpl &Visited, SmallVectorImpl> &Callees, SmallPtrSetImpl &CalleeSet) { while (!Worklist.empty()) { Constant *C = Worklist.pop_back_val(); if (Function *F = dyn_cast(C)) { // Note that we consider *any* function with a definition to be a viable // edge. Even if the function's definition is subject to replacement by // some other module (say, a weak definition) there may still be // optimizations which essentially speculate based on the definition and // a way to check that the specific definition is in fact the one being // used. For example, this could be done by moving the weak definition to // a strong (internal) definition and making the weak definition be an // alias. Then a test of the address of the weak function against the new // strong definition's address would be an effective way to determine the // safety of optimizing a direct call edge. if (!F->isDeclaration() && CalleeSet.insert(F)) Callees.push_back(F); continue; } for (Value *Op : C->operand_values()) if (Visited.insert(cast(Op))) Worklist.push_back(cast(Op)); } } LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) : G(G), F(F) { SmallVector Worklist; SmallPtrSet Visited; // Find all the potential callees in this function. First walk the // instructions and add every operand which is a constant to the worklist. for (BasicBlock &BB : F) for (Instruction &I : BB) for (Value *Op : I.operand_values()) if (Constant *C = dyn_cast(Op)) if (Visited.insert(C)) Worklist.push_back(C); // We've collected all the constant (and thus potentially function or // function containing) operands to all of the instructions in the function. // Process them (recursively) collecting every function found. findCallees(Worklist, Visited, Callees, CalleeSet); } LazyCallGraph::Node::Node(LazyCallGraph &G, const Node &OtherN) : G(G), F(OtherN.F), CalleeSet(OtherN.CalleeSet) { // Loop over the other node's callees, adding the Function*s to our list // directly, and recursing to add the Node*s. Callees.reserve(OtherN.Callees.size()); for (const auto &OtherCallee : OtherN.Callees) if (Function *Callee = OtherCallee.dyn_cast()) Callees.push_back(Callee); else Callees.push_back(G.copyInto(*OtherCallee.get())); } LazyCallGraph::Node::Node(LazyCallGraph &G, Node &&OtherN) : G(G), F(OtherN.F), Callees(std::move(OtherN.Callees)), CalleeSet(std::move(OtherN.CalleeSet)) { // Loop over our Callees. They've been moved from another node, but we need // to move the Node*s to live under our bump ptr allocator. for (auto &Callee : Callees) if (Node *ChildN = Callee.dyn_cast()) Callee = G.moveInto(std::move(*ChildN)); } LazyCallGraph::LazyCallGraph(Module &M) : M(M) { for (Function &F : M) if (!F.isDeclaration() && !F.hasLocalLinkage()) if (EntryNodeSet.insert(&F)) EntryNodes.push_back(&F); // Now add entry nodes for functions reachable via initializers to globals. SmallVector Worklist; SmallPtrSet Visited; for (GlobalVariable &GV : M.globals()) if (GV.hasInitializer()) if (Visited.insert(GV.getInitializer())) Worklist.push_back(GV.getInitializer()); findCallees(Worklist, Visited, EntryNodes, EntryNodeSet); } LazyCallGraph::LazyCallGraph(const LazyCallGraph &G) : M(G.M), EntryNodeSet(G.EntryNodeSet) { EntryNodes.reserve(G.EntryNodes.size()); for (const auto &EntryNode : G.EntryNodes) if (Function *Callee = EntryNode.dyn_cast()) EntryNodes.push_back(Callee); else EntryNodes.push_back(copyInto(*EntryNode.get())); } // FIXME: This would be crazy simpler if BumpPtrAllocator were movable without // invalidating any of the allocated memory. We should make that be the case at // some point and delete this. LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) : M(G.M), EntryNodes(std::move(G.EntryNodes)), EntryNodeSet(std::move(G.EntryNodeSet)) { // Loop over our EntryNodes. They've been moved from another graph, so we // need to move the Node*s to live under our bump ptr allocator. We can just // do this in-place. for (auto &Entry : EntryNodes) if (Node *EntryN = Entry.dyn_cast()) Entry = moveInto(std::move(*EntryN)); } LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) { return new (MappedN = BPA.Allocate()) Node(*this, F); } LazyCallGraph::Node *LazyCallGraph::copyInto(const Node &OtherN) { Node *&N = NodeMap[&OtherN.F]; if (N) return N; return new (N = BPA.Allocate()) Node(*this, OtherN); } LazyCallGraph::Node *LazyCallGraph::moveInto(Node &&OtherN) { Node *&N = NodeMap[&OtherN.F]; if (N) return N; return new (N = BPA.Allocate()) Node(*this, std::move(OtherN)); } char LazyCallGraphAnalysis::PassID; LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, SmallPtrSetImpl &Printed) { // Recurse depth first through the nodes. for (LazyCallGraph::Node *ChildN : N) if (Printed.insert(ChildN)) printNodes(OS, *ChildN, Printed); OS << " Call edges in function: " << N.getFunction().getName() << "\n"; for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I) OS << " -> " << I->getFunction().getName() << "\n"; OS << "\n"; } PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M, ModuleAnalysisManager *AM) { LazyCallGraph &G = AM->getResult(M); OS << "Printing the call graph for module: " << M->getModuleIdentifier() << "\n\n"; SmallPtrSet Printed; for (LazyCallGraph::Node *N : G) if (Printed.insert(N)) printNodes(OS, *N, Printed); return PreservedAnalyses::all(); }