//===- LiveValues.cpp - Liveness information for LLVM IR Values. ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the implementation for the LLVM IR Value liveness // analysis pass. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LiveValues.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" using namespace llvm; namespace llvm { FunctionPass *createLiveValuesPass() { return new LiveValues(); } } char LiveValues::ID = 0; static RegisterPass X("live-values", "Value Liveness Analysis", false, true); LiveValues::LiveValues() : FunctionPass(&ID) {} void LiveValues::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } bool LiveValues::runOnFunction(Function &F) { DT = &getAnalysis(); LI = &getAnalysis(); // This pass' values are computed lazily, so there's nothing to do here. return false; } void LiveValues::releaseMemory() { Memos.clear(); } /// isUsedInBlock - Test if the given value is used in the given block. /// bool LiveValues::isUsedInBlock(const Value *V, const BasicBlock *BB) { Memo &M = getMemo(V); return M.Used.count(BB); } /// isLiveThroughBlock - Test if the given value is known to be /// live-through the given block, meaning that the block is properly /// dominated by the value's definition, and there exists a block /// reachable from it that contains a use. This uses a conservative /// approximation that errs on the side of returning false. /// bool LiveValues::isLiveThroughBlock(const Value *V, const BasicBlock *BB) { Memo &M = getMemo(V); return M.LiveThrough.count(BB); } /// isKilledInBlock - Test if the given value is known to be killed in /// the given block, meaning that the block contains a use of the value, /// and no blocks reachable from the block contain a use. This uses a /// conservative approximation that errs on the side of returning false. /// bool LiveValues::isKilledInBlock(const Value *V, const BasicBlock *BB) { Memo &M = getMemo(V); return M.Killed.count(BB); } /// getMemo - Retrieve an existing Memo for the given value if one /// is available, otherwise compute a new one. /// LiveValues::Memo &LiveValues::getMemo(const Value *V) { DenseMap::iterator I = Memos.find(V); if (I != Memos.end()) return I->second; return compute(V); } /// getImmediateDominator - A handy utility for the specific DominatorTree /// query that we need here. /// static const BasicBlock *getImmediateDominator(const BasicBlock *BB, const DominatorTree *DT) { DomTreeNode *Node = DT->getNode(const_cast(BB))->getIDom(); return Node ? Node->getBlock() : 0; } /// compute - Compute a new Memo for the given value. /// LiveValues::Memo &LiveValues::compute(const Value *V) { Memo &M = Memos[V]; // Determine the block containing the definition. const BasicBlock *DefBB; // Instructions define values with meaningful live ranges. if (const Instruction *I = dyn_cast(V)) DefBB = I->getParent(); // Arguments can be analyzed as values defined in the entry block. else if (const Argument *A = dyn_cast(V)) DefBB = &A->getParent()->getEntryBlock(); // Constants and other things aren't meaningful here, so just // return having computed an empty Memo so that we don't come // here again. The assumption here is that client code won't // be asking about such values very often. else return M; // Determine if the value is defined inside a loop. This is used // to track whether the value is ever used outside the loop, so // it'll be set to null if the value is either not defined in a // loop or used outside the loop in which it is defined. const Loop *L = LI->getLoopFor(DefBB); // Track whether the value is used anywhere outside of the block // in which it is defined. bool LiveOutOfDefBB = false; // Examine each use of the value. for (Value::use_const_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { const User *U = *I; const BasicBlock *UseBB = cast(U)->getParent(); // Note the block in which this use occurs. M.Used.insert(UseBB); // If the use block doesn't have successors, the value can be // considered killed. if (succ_begin(UseBB) == succ_end(UseBB)) M.Killed.insert(UseBB); // Observe whether the value is used outside of the loop in which // it is defined. Switch to an enclosing loop if necessary. for (; L; L = L->getParentLoop()) if (L->contains(UseBB)) break; // Search for live-through blocks. const BasicBlock *BB; if (const PHINode *PHI = dyn_cast(U)) { // For PHI nodes, start the search at the incoming block paired with the // incoming value, which must be dominated by the definition. unsigned Num = PHI->getIncomingValueNumForOperand(I.getOperandNo()); BB = PHI->getIncomingBlock(Num); // A PHI-node use means the value is live-out of it's defining block // even if that block also contains the only use. LiveOutOfDefBB = true; } else { // Otherwise just start the search at the use. BB = UseBB; // Note if the use is outside the defining block. LiveOutOfDefBB |= UseBB != DefBB; } // Climb the immediate dominator tree from the use to the definition // and mark all intermediate blocks as live-through. for (; BB != DefBB; BB = getImmediateDominator(BB, DT)) { if (BB != UseBB && !M.LiveThrough.insert(BB)) break; } } // If the value is defined inside a loop and is not live outside // the loop, then each exit block of the loop in which the value // is used is a kill block. if (L) { SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { const BasicBlock *ExitingBlock = ExitingBlocks[i]; if (M.Used.count(ExitingBlock)) M.Killed.insert(ExitingBlock); } } // If the value was never used outside the the block in which it was // defined, it's killed in that block. if (!LiveOutOfDefBB) M.Killed.insert(DefBB); return M; }