//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a value numbering pass that value #'s load instructions. // To do this, it finds lexically identical load instructions, and uses alias // analysis to determine which loads are guaranteed to produce the same value. // // This pass builds off of another value numbering pass to implement value // numbering for non-load instructions. It uses Alias Analysis so that it can // disambiguate the load instructions. The more powerful these base analyses // are, the more powerful the resultant analysis will be. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoadValueNumbering.h" #include "llvm/Analysis/ValueNumbering.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Target/TargetData.h" #include "llvm/Pass.h" #include "llvm/Type.h" #include "llvm/iMemory.h" #include "llvm/BasicBlock.h" #include "llvm/Support/CFG.h" #include #include namespace { // FIXME: This should not be a FunctionPass. struct LoadVN : public FunctionPass, public ValueNumbering { /// Pass Implementation stuff. This doesn't do any analysis. /// bool runOnFunction(Function &) { return false; } /// getAnalysisUsage - Does not modify anything. It uses Value Numbering /// and Alias Analysis. /// virtual void getAnalysisUsage(AnalysisUsage &AU) const; /// getEqualNumberNodes - Return nodes with the same value number as the /// specified Value. This fills in the argument vector with any equal /// values. /// virtual void getEqualNumberNodes(Value *V1, std::vector &RetVals) const; private: /// haveEqualValueNumber - Given two load instructions, determine if they /// both produce the same value on every execution of the program, assuming /// that their source operands always give the same value. This uses the /// AliasAnalysis implementation to invalidate loads when stores or function /// calls occur that could modify the value produced by the load. /// bool haveEqualValueNumber(LoadInst *LI, LoadInst *LI2, AliasAnalysis &AA, DominatorSet &DomSetInfo) const; bool haveEqualValueNumber(LoadInst *LI, StoreInst *SI, AliasAnalysis &AA, DominatorSet &DomSetInfo) const; }; // Register this pass... RegisterOpt X("load-vn", "Load Value Numbering"); // Declare that we implement the ValueNumbering interface RegisterAnalysisGroup Y; } Pass *createLoadValueNumberingPass() { return new LoadVN(); } /// getAnalysisUsage - Does not modify anything. It uses Value Numbering and /// Alias Analysis. /// void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } // getEqualNumberNodes - Return nodes with the same value number as the // specified Value. This fills in the argument vector with any equal values. // void LoadVN::getEqualNumberNodes(Value *V, std::vector &RetVals) const { // If the alias analysis has any must alias information to share with us, we // can definitely use it. if (isa(V->getType())) getAnalysis().getMustAliases(V, RetVals); if (LoadInst *LI = dyn_cast(V)) { // Volatile loads cannot be replaced with the value of other loads. if (LI->isVolatile()) return getAnalysis().getEqualNumberNodes(V, RetVals); // If we have a load instruction, find all of the load and store // instructions that use the same source operand. We implement this // recursively, because there could be a load of a load of a load that are // all identical. We are guaranteed that this cannot be an infinite // recursion because load instructions would have to pass through a PHI node // in order for there to be a cycle. The PHI node would be handled by the // else case here, breaking the infinite recursion. // std::vector PointerSources; getEqualNumberNodes(LI->getOperand(0), PointerSources); PointerSources.push_back(LI->getOperand(0)); Function *F = LI->getParent()->getParent(); // Now that we know the set of equivalent source pointers for the load // instruction, look to see if there are any load or store candidates that // are identical. // std::vector CandidateLoads; std::vector CandidateStores; while (!PointerSources.empty()) { Value *Source = PointerSources.back(); PointerSources.pop_back(); // Get a source pointer... for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end(); UI != UE; ++UI) if (LoadInst *Cand = dyn_cast(*UI)) {// Is a load of source? if (Cand->getParent()->getParent() == F && // In the same function? Cand != LI && !Cand->isVolatile()) // Not LI itself? CandidateLoads.push_back(Cand); // Got one... } else if (StoreInst *Cand = dyn_cast(*UI)) { if (Cand->getParent()->getParent() == F && !Cand->isVolatile() && Cand->getOperand(1) == Source) // It's a store THROUGH the ptr... CandidateStores.push_back(Cand); } } // Remove duplicates from the CandidateLoads list because alias analysis // processing may be somewhat expensive and we don't want to do more work // than necessary. // unsigned OldSize = CandidateLoads.size(); std::sort(CandidateLoads.begin(), CandidateLoads.end()); CandidateLoads.erase(std::unique(CandidateLoads.begin(), CandidateLoads.end()), CandidateLoads.end()); // FIXME: REMOVE THIS SORTING AND UNIQUING IF IT CAN'T HAPPEN assert(CandidateLoads.size() == OldSize && "Shrunk the candloads list?"); // Get Alias Analysis... AliasAnalysis &AA = getAnalysis(); DominatorSet &DomSetInfo = getAnalysis(); // Loop over all of the candidate loads. If they are not invalidated by // stores or calls between execution of them and LI, then add them to // RetVals. for (unsigned i = 0, e = CandidateLoads.size(); i != e; ++i) if (haveEqualValueNumber(LI, CandidateLoads[i], AA, DomSetInfo)) RetVals.push_back(CandidateLoads[i]); for (unsigned i = 0, e = CandidateStores.size(); i != e; ++i) if (haveEqualValueNumber(LI, CandidateStores[i], AA, DomSetInfo)) RetVals.push_back(CandidateStores[i]->getOperand(0)); } else { assert(&getAnalysis() != (ValueNumbering*)this && "getAnalysis() returned this!"); // Not a load instruction? Just chain to the base value numbering // implementation to satisfy the request... return getAnalysis().getEqualNumberNodes(V, RetVals); } } // CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB // (until DestBB) contain an instruction that might invalidate Ptr. // static bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB, Value *Ptr, unsigned Size, AliasAnalysis &AA, std::set &VisitedSet) { // Found the termination point! if (BB == DestBB || VisitedSet.count(BB)) return false; // Avoid infinite recursion! VisitedSet.insert(BB); // Can this basic block modify Ptr? if (AA.canBasicBlockModify(*BB, Ptr, Size)) return true; // Check all of our predecessor blocks... for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) if (CheckForInvalidatingInst(*PI, DestBB, Ptr, Size, AA, VisitedSet)) return true; // None of our predecessor blocks contain an invalidating instruction, and we // don't either! return false; } /// haveEqualValueNumber - Given two load instructions, determine if they both /// produce the same value on every execution of the program, assuming that /// their source operands always give the same value. This uses the /// AliasAnalysis implementation to invalidate loads when stores or function /// calls occur that could modify the value produced by the load. /// bool LoadVN::haveEqualValueNumber(LoadInst *L1, LoadInst *L2, AliasAnalysis &AA, DominatorSet &DomSetInfo) const { // Figure out which load dominates the other one. If neither dominates the // other we cannot eliminate them. // // FIXME: This could be enhanced to some cases with a shared dominator! // if (DomSetInfo.dominates(L2, L1)) std::swap(L1, L2); // Make L1 dominate L2 else if (!DomSetInfo.dominates(L1, L2)) return false; // Neither instruction dominates the other one... BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent(); Value *LoadAddress = L1->getOperand(0); assert(L1->getType() == L2->getType() && "How could the same source pointer return different types?"); // Find out how many bytes of memory are loaded by the load instruction... unsigned LoadSize = getAnalysis().getTypeSize(L1->getType()); // L1 now dominates L2. Check to see if the intervening instructions between // the two loads include a store or call... // if (BB1 == BB2) { // In same basic block? // In this degenerate case, no checking of global basic blocks has to occur // just check the instructions BETWEEN L1 & L2... // if (AA.canInstructionRangeModify(*L1, *L2, LoadAddress, LoadSize)) return false; // Cannot eliminate load // No instructions invalidate the loads, they produce the same value! return true; } else { // Make sure that there are no store instructions between L1 and the end of // its basic block... // if (AA.canInstructionRangeModify(*L1, *BB1->getTerminator(), LoadAddress, LoadSize)) return false; // Cannot eliminate load // Make sure that there are no store instructions between the start of BB2 // and the second load instruction... // if (AA.canInstructionRangeModify(BB2->front(), *L2, LoadAddress, LoadSize)) return false; // Cannot eliminate load // Do a depth first traversal of the inverse CFG starting at L2's block, // looking for L1's block. The inverse CFG is made up of the predecessor // nodes of a block... so all of the edges in the graph are "backward". // std::set VisitedSet; for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI) if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, LoadSize, AA, VisitedSet)) return false; // If we passed all of these checks then we are sure that the two loads // produce the same value. return true; } } /// haveEqualValueNumber - Given a load instruction and a store instruction, /// determine if the stored value reaches the loaded value unambiguously on /// every execution of the program. This uses the AliasAnalysis implementation /// to invalidate the stored value when stores or function calls occur that /// could modify the value produced by the load. /// bool LoadVN::haveEqualValueNumber(LoadInst *Load, StoreInst *Store, AliasAnalysis &AA, DominatorSet &DomSetInfo) const { // If the store does not dominate the load, we cannot do anything... if (!DomSetInfo.dominates(Store, Load)) return false; BasicBlock *BB1 = Store->getParent(), *BB2 = Load->getParent(); Value *LoadAddress = Load->getOperand(0); assert(LoadAddress->getType() == Store->getOperand(1)->getType() && "How could the same source pointer return different types?"); // Find out how many bytes of memory are loaded by the load instruction... unsigned LoadSize = getAnalysis().getTypeSize(Load->getType()); // Compute a basic block iterator pointing to the instruction after the store. BasicBlock::iterator StoreIt = Store; ++StoreIt; // Check to see if the intervening instructions between the two store and load // include a store or call... // if (BB1 == BB2) { // In same basic block? // In this degenerate case, no checking of global basic blocks has to occur // just check the instructions BETWEEN Store & Load... // if (AA.canInstructionRangeModify(*StoreIt, *Load, LoadAddress, LoadSize)) return false; // Cannot eliminate load // No instructions invalidate the stored value, they produce the same value! return true; } else { // Make sure that there are no store instructions between the Store and the // end of its basic block... // if (AA.canInstructionRangeModify(*StoreIt, *BB1->getTerminator(), LoadAddress, LoadSize)) return false; // Cannot eliminate load // Make sure that there are no store instructions between the start of BB2 // and the second load instruction... // if (AA.canInstructionRangeModify(BB2->front(), *Load, LoadAddress,LoadSize)) return false; // Cannot eliminate load // Do a depth first traversal of the inverse CFG starting at L2's block, // looking for L1's block. The inverse CFG is made up of the predecessor // nodes of a block... so all of the edges in the graph are "backward". // std::set VisitedSet; for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI) if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, LoadSize, AA, VisitedSet)) return false; // If we passed all of these checks then we are sure that the two loads // produce the same value. return true; } }