//===- LoopInfo.cpp - Natural Loop Calculator -------------------------------=// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. Note that the // loops identified may actually be several natural loops that share the same // header node... not just a single natural loop. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "Support/DepthFirstIterator.h" #include AnalysisID LoopInfo::ID(AnalysisID::create(), true); //===----------------------------------------------------------------------===// // Loop implementation // bool Loop::contains(const BasicBlock *BB) const { return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); } void LoopInfo::releaseMemory() { for (std::vector::iterator I = TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I) delete *I; // Delete all of the loops... BBMap.clear(); // Reset internal state of analysis TopLevelLoops.clear(); } //===----------------------------------------------------------------------===// // LoopInfo implementation // bool LoopInfo::runOnFunction(Function &) { releaseMemory(); Calculate(getAnalysis()); // Update return false; } void LoopInfo::Calculate(const DominatorSet &DS) { BasicBlock *RootNode = DS.getRoot(); for (df_iterator NI = df_begin(RootNode), NE = df_end(RootNode); NI != NE; ++NI) if (Loop *L = ConsiderForLoop(*NI, DS)) TopLevelLoops.push_back(L); for (unsigned i = 0; i < TopLevelLoops.size(); ++i) TopLevelLoops[i]->setLoopDepth(1); } void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(DominatorSet::ID); AU.addProvided(ID); } Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) { if (BBMap.find(BB) != BBMap.end()) return 0; // Havn't processed this node? std::vector TodoStack; // Scan the predecessors of BB, checking to see if BB dominates any of // them. for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) if (DS.dominates(BB, *I)) // If BB dominates it's predecessor... TodoStack.push_back(*I); if (TodoStack.empty()) return 0; // Doesn't dominate any predecessors... // Create a new loop to represent this basic block... Loop *L = new Loop(BB); BBMap[BB] = L; while (!TodoStack.empty()) { // Process all the nodes in the loop BasicBlock *X = TodoStack.back(); TodoStack.pop_back(); if (!L->contains(X)) { // As of yet unprocessed?? L->Blocks.push_back(X); // Add all of the predecessors of X to the end of the work stack... TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); } } // Add the basic blocks that comprise this loop to the BBMap so that this // loop can be found for them. Also check subsidary basic blocks to see if // they start subloops of their own. // for (std::vector::reverse_iterator I = L->Blocks.rbegin(), E = L->Blocks.rend(); I != E; ++I) { // Check to see if this block starts a new loop if (Loop *NewLoop = ConsiderForLoop(*I, DS)) { L->SubLoops.push_back(NewLoop); NewLoop->ParentLoop = L; } if (BBMap.find(*I) == BBMap.end()) BBMap.insert(std::make_pair(*I, L)); } return L; }