//===- PostDominators.cpp - Post-Dominator Calculation --------------------===// // // This file implements the post-dominator construction algorithms. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/PostDominators.h" #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Support/CFG.h" #include "Support/DepthFirstIterator.h" #include "Support/SetOperations.h" using std::set; //===----------------------------------------------------------------------===// // PostDominatorSet Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis B("postdomset", "Post-Dominator Set Construction", true); // Postdominator set construction. This converts the specified function to only // have a single exit node (return stmt), then calculates the post dominance // sets for the function. // bool PostDominatorSet::runOnFunction(Function &F) { Doms.clear(); // Reset from the last time we were run... // Since we require that the unify all exit nodes pass has been run, we know // that there can be at most one return instruction in the function left. // Get it. // Root = getAnalysis().getExitNode(); if (Root == 0) { // No exit node for the function? Postdomsets are all empty for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) Doms[FI] = DomSetType(); return false; } bool Changed; do { Changed = false; set Visited; DomSetType WorkingSet; idf_iterator It = idf_begin(Root), End = idf_end(Root); for ( ; It != End; ++It) { BasicBlock *BB = *It; succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a successor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially. // while (Doms[*PI].size() == 0) ++PI; WorkingSet = Doms[*PI]; for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets DomSetType &PredSet = Doms[*PI]; if (PredSet.size()) set_intersect(WorkingSet, PredSet); } } else if (BB != Root) { // If this isn't the root basic block and it has no successors, it must // be an non-returning block. Fib a bit by saying that the root node // postdominates this unreachable node. This isn't exactly true, // because there is no path from this node to the root node, but it is // sorta true because any paths to the exit node would have to go // through this node. // // This allows for postdominator properties to be built for code that // doesn't return in a reasonable manner. // WorkingSet = Doms[Root]; } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); return false; } // getAnalysisUsage - This obviously provides a post-dominator set, but it also // requires the UnifyFunctionExitNodes pass. // void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } //===----------------------------------------------------------------------===// // ImmediatePostDominators Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis D("postidom", "Immediate Post-Dominators Construction", true); //===----------------------------------------------------------------------===// // PostDominatorTree Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis F("postdomtree", "Post-Dominator Tree Construction", true); void PostDominatorTree::calculate(const PostDominatorSet &DS) { Nodes[Root] = new Node(Root, 0); // Add a node for the root... if (Root) { // Iterate over all nodes in depth first order... for (idf_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) { BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping // over nodes in the dominator chain, looking for a node whose dominator // set is equal to the current nodes, except that the current node does // not exist in it. This means that it is one level higher in the dom // chain than the current node, and it is our idom! We know that we have // already added a DominatorTree node for our idom, because the idom must // be a predecessor in the depth first order that we are iterating through // the function. // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number // of elements in the dominator set indicates what level the // node is at in the chain. We want the node immediately // above us, so it will have an identical dominator set, // except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } } //===----------------------------------------------------------------------===// // PostDominanceFrontier Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis H("postdomfrontier", "Post-Dominance Frontier Construction", true); const DominanceFrontier::DomSetType & PostDominanceFrontier::calculate(const PostDominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... if (!Root) return S; for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this predeccessor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (PostDominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } // stub - a dummy function to make linking work ok. void PostDominanceFrontier::stub() { }