//===- PostDominators.cpp - Post-Dominator Calculation --------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the post-dominator construction algorithms. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/PostDominators.h" #include "llvm/Instructions.h" #include "llvm/Support/CFG.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" using namespace llvm; //===----------------------------------------------------------------------===// // PostDominatorTree Implementation //===----------------------------------------------------------------------===// char PostDominatorTree::ID = 0; char PostDominanceFrontier::ID = 0; char PostETForest::ID = 0; static RegisterPass F("postdomtree", "Post-Dominator Tree Construction", true); unsigned PostDominatorTree::DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N) { std::vector > workStack; std::set visited; workStack.push_back(std::make_pair(V, &VInfo)); do { BasicBlock *currentBB = workStack.back().first; InfoRec *currentVInfo = workStack.back().second; // Visit each block only once. if (visited.count(currentBB) == 0) { visited.insert(currentBB); currentVInfo->Semi = ++N; currentVInfo->Label = currentBB; Vertex.push_back(currentBB); // Vertex[n] = current; // Info[currentBB].Ancestor = 0; // Ancestor[n] = 0 // Child[currentBB] = 0; currentVInfo->Size = 1; // Size[currentBB] = 1 } // Visit children bool visitChild = false; for (pred_iterator PI = pred_begin(currentBB), PE = pred_end(currentBB); PI != PE && !visitChild; ++PI) { InfoRec &SuccVInfo = Info[*PI]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = currentBB; if (visited.count (*PI) == 0) { workStack.push_back(std::make_pair(*PI, &SuccVInfo)); visitChild = true; } } } // If all children are visited or if this block has no child then pop this // block out of workStack. if (!visitChild) workStack.pop_back(); } while (!workStack.empty()); return N; } void PostDominatorTree::Compress(BasicBlock *V, InfoRec &VInfo) { BasicBlock *VAncestor = VInfo.Ancestor; InfoRec &VAInfo = Info[VAncestor]; if (VAInfo.Ancestor == 0) return; Compress(VAncestor, VAInfo); BasicBlock *VAncestorLabel = VAInfo.Label; BasicBlock *VLabel = VInfo.Label; if (Info[VAncestorLabel].Semi < Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Ancestor = VAInfo.Ancestor; } BasicBlock *PostDominatorTree::Eval(BasicBlock *V) { InfoRec &VInfo = Info[V]; // Higher-complexity but faster implementation if (VInfo.Ancestor == 0) return V; Compress(V, VInfo); return VInfo.Label; } void PostDominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo) { // Higher-complexity but faster implementation WInfo.Ancestor = V; } void PostDominatorTree::calculate(Function &F) { // Step #0: Scan the function looking for the root nodes of the post-dominance // relationships. These blocks, which have no successors, end with return and // unwind instructions. for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) if (succ_begin(I) == succ_end(I)) Roots.push_back(I); Vertex.push_back(0); // Step #1: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. unsigned N = 0; for (unsigned i = 0, e = Roots.size(); i != e; ++i) N = DFSPass(Roots[i], Info[Roots[i]], N); for (unsigned i = N; i >= 2; --i) { BasicBlock *W = Vertex[i]; InfoRec &WInfo = Info[W]; // Step #2: Calculate the semidominators of all vertices for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI) if (Info.count(*SI)) { // Only if this predecessor is reachable! unsigned SemiU = Info[Eval(*SI)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } Info[Vertex[WInfo.Semi]].Bucket.push_back(W); BasicBlock *WParent = WInfo.Parent; Link(WParent, W, WInfo); // Step #3: Implicitly define the immediate dominator of vertices std::vector &WParentBucket = Info[WParent].Bucket; while (!WParentBucket.empty()) { BasicBlock *V = WParentBucket.back(); WParentBucket.pop_back(); BasicBlock *U = Eval(V); IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent; } } // Step #4: Explicitly define the immediate dominator of each vertex for (unsigned i = 2; i <= N; ++i) { BasicBlock *W = Vertex[i]; BasicBlock *&WIDom = IDoms[W]; if (WIDom != Vertex[Info[W].Semi]) WIDom = IDoms[WIDom]; } if (Roots.empty()) return; // Add a node for the root. This node might be the actual root, if there is // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) // which postdominates all real exits if there are multiple exit blocks. BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0; Nodes[Root] = RootNode = new Node(Root, 0); // Loop over all of the reachable blocks in the function... for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) if (BasicBlock *ImmPostDom = getIDom(I)) { // Reachable block. Node *&BBNode = Nodes[I]; if (!BBNode) { // Haven't calculated this node yet? // Get or calculate the node for the immediate dominator Node *IPDomNode = getNodeForBlock(ImmPostDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode BBNode = IPDomNode->addChild(new Node(I, IPDomNode)); } } // Free temporary memory used to construct idom's IDoms.clear(); Info.clear(); std::vector().swap(Vertex); } DominatorTreeBase::Node *PostDominatorTree::getNodeForBlock(BasicBlock *BB) { Node *&BBNode = Nodes[BB]; if (BBNode) return BBNode; // Haven't calculated this node yet? Get or calculate the node for the // immediate postdominator. BasicBlock *IPDom = getIDom(BB); Node *IPDomNode = getNodeForBlock(IPDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode return BBNode = IPDomNode->addChild(new Node(BB, IPDomNode)); } //===----------------------------------------------------------------------===// // PostETForest Implementation //===----------------------------------------------------------------------===// static RegisterPass G("postetforest", "Post-ET-Forest Construction", true); ETNode *PostETForest::getNodeForBlock(BasicBlock *BB) { ETNode *&BBNode = Nodes[BB]; if (BBNode) return BBNode; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. PostDominatorTree::Node *node = getAnalysis().getNode(BB); // If we are unreachable, we may not have an immediate dominator. if (!node) return 0; else if (!node->getIDom()) return BBNode = new ETNode(BB); else { ETNode *IDomNode = getNodeForBlock(node->getIDom()->getBlock()); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode BBNode = new ETNode(BB); BBNode->setFather(IDomNode); return BBNode; } } void PostETForest::calculate(const PostDominatorTree &DT) { for (unsigned i = 0, e = Roots.size(); i != e; ++i) Nodes[Roots[i]] = new ETNode(Roots[i]); // Add a node for the root // Iterate over all nodes in inverse depth first order. for (unsigned i = 0, e = Roots.size(); i != e; ++i) for (idf_iterator I = idf_begin(Roots[i]), E = idf_end(Roots[i]); I != E; ++I) { BasicBlock *BB = *I; ETNode *&BBNode = Nodes[BB]; if (!BBNode) { ETNode *IDomNode = NULL; PostDominatorTree::Node *node = DT.getNode(BB); if (node && node->getIDom()) IDomNode = getNodeForBlock(node->getIDom()->getBlock()); // Add a new ETNode for this BasicBlock, and set it's parent // to it's immediate dominator. BBNode = new ETNode(BB); if (IDomNode) BBNode->setFather(IDomNode); } } int dfsnum = 0; // Iterate over all nodes in depth first order... for (unsigned i = 0, e = Roots.size(); i != e; ++i) for (idf_iterator I = idf_begin(Roots[i]), E = idf_end(Roots[i]); I != E; ++I) { if (!getNodeForBlock(*I)->hasFather()) getNodeForBlock(*I)->assignDFSNumber(dfsnum); } DFSInfoValid = true; } //===----------------------------------------------------------------------===// // PostDominanceFrontier Implementation //===----------------------------------------------------------------------===// static RegisterPass H("postdomfrontier", "Post-Dominance Frontier Construction", true); const DominanceFrontier::DomSetType & PostDominanceFrontier::calculate(const PostDominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getBlock(); DomSetType &S = Frontiers[BB]; // The new set to fill in... if (getRoots().empty()) return S; if (BB) for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this predecessor? DominatorTree::Node *SINode = DT[*SI]; if (SINode && SINode->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (PostDominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->properlyDominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } // Ensure that this .cpp file gets linked when PostDominators.h is used. DEFINING_FILE_FOR(PostDominanceFrontier)