//===- ProfileInfo.cpp - Profile Info Interface ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the abstract ProfileInfo interface, and the default // "no profile" implementation. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "profile-info" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Pass.h" #include "llvm/Support/CFG.h" #include "llvm/ADT/SmallSet.h" #include #include #include using namespace llvm; namespace llvm { template<> char ProfileInfoT::ID = 0; } // Register the ProfileInfo interface, providing a nice name to refer to. INITIALIZE_ANALYSIS_GROUP(ProfileInfo, "Profile Information", NoProfileInfo) namespace llvm { template <> ProfileInfoT::ProfileInfoT() {} template <> ProfileInfoT::~ProfileInfoT() {} template <> ProfileInfoT::ProfileInfoT() { MachineProfile = 0; } template <> ProfileInfoT::~ProfileInfoT() { if (MachineProfile) delete MachineProfile; } template<> char ProfileInfoT::ID = 0; template<> const double ProfileInfoT::MissingValue = -1; template<> const double ProfileInfoT::MissingValue = -1; template<> double ProfileInfoT::getExecutionCount(const BasicBlock *BB) { std::map::iterator J = BlockInformation.find(BB->getParent()); if (J != BlockInformation.end()) { BlockCounts::iterator I = J->second.find(BB); if (I != J->second.end()) return I->second; } double Count = MissingValue; const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); // Are there zero predecessors of this block? if (PI == PE) { Edge e = getEdge(0, BB); Count = getEdgeWeight(e); } else { // Otherwise, if there are predecessors, the execution count of this block is // the sum of the edge frequencies from the incoming edges. std::set ProcessedPreds; Count = 0; for (; PI != PE; ++PI) { const BasicBlock *P = *PI; if (ProcessedPreds.insert(P).second) { double w = getEdgeWeight(getEdge(P, BB)); if (w == MissingValue) { Count = MissingValue; break; } Count += w; } } } // If the predecessors did not suffice to get block weight, try successors. if (Count == MissingValue) { succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); // Are there zero successors of this block? if (SI == SE) { Edge e = getEdge(BB,0); Count = getEdgeWeight(e); } else { std::set ProcessedSuccs; Count = 0; for (; SI != SE; ++SI) if (ProcessedSuccs.insert(*SI).second) { double w = getEdgeWeight(getEdge(BB, *SI)); if (w == MissingValue) { Count = MissingValue; break; } Count += w; } } } if (Count != MissingValue) BlockInformation[BB->getParent()][BB] = Count; return Count; } template<> double ProfileInfoT:: getExecutionCount(const MachineBasicBlock *MBB) { std::map::iterator J = BlockInformation.find(MBB->getParent()); if (J != BlockInformation.end()) { BlockCounts::iterator I = J->second.find(MBB); if (I != J->second.end()) return I->second; } return MissingValue; } template<> double ProfileInfoT::getExecutionCount(const Function *F) { std::map::iterator J = FunctionInformation.find(F); if (J != FunctionInformation.end()) return J->second; // isDeclaration() is checked here and not at start of function to allow // functions without a body still to have a execution count. if (F->isDeclaration()) return MissingValue; double Count = getExecutionCount(&F->getEntryBlock()); if (Count != MissingValue) FunctionInformation[F] = Count; return Count; } template<> double ProfileInfoT:: getExecutionCount(const MachineFunction *MF) { std::map::iterator J = FunctionInformation.find(MF); if (J != FunctionInformation.end()) return J->second; double Count = getExecutionCount(&MF->front()); if (Count != MissingValue) FunctionInformation[MF] = Count; return Count; } template<> void ProfileInfoT:: setExecutionCount(const BasicBlock *BB, double w) { DEBUG(dbgs() << "Creating Block " << BB->getName() << " (weight: " << format("%.20g",w) << ")\n"); BlockInformation[BB->getParent()][BB] = w; } template<> void ProfileInfoT:: setExecutionCount(const MachineBasicBlock *MBB, double w) { DEBUG(dbgs() << "Creating Block " << MBB->getBasicBlock()->getName() << " (weight: " << format("%.20g",w) << ")\n"); BlockInformation[MBB->getParent()][MBB] = w; } template<> void ProfileInfoT::addEdgeWeight(Edge e, double w) { double oldw = getEdgeWeight(e); assert (oldw != MissingValue && "Adding weight to Edge with no previous weight"); DEBUG(dbgs() << "Adding to Edge " << e << " (new weight: " << format("%.20g",oldw + w) << ")\n"); EdgeInformation[getFunction(e)][e] = oldw + w; } template<> void ProfileInfoT:: addExecutionCount(const BasicBlock *BB, double w) { double oldw = getExecutionCount(BB); assert (oldw != MissingValue && "Adding weight to Block with no previous weight"); DEBUG(dbgs() << "Adding to Block " << BB->getName() << " (new weight: " << format("%.20g",oldw + w) << ")\n"); BlockInformation[BB->getParent()][BB] = oldw + w; } template<> void ProfileInfoT::removeBlock(const BasicBlock *BB) { std::map::iterator J = BlockInformation.find(BB->getParent()); if (J == BlockInformation.end()) return; DEBUG(dbgs() << "Deleting " << BB->getName() << "\n"); J->second.erase(BB); } template<> void ProfileInfoT::removeEdge(Edge e) { std::map::iterator J = EdgeInformation.find(getFunction(e)); if (J == EdgeInformation.end()) return; DEBUG(dbgs() << "Deleting" << e << "\n"); J->second.erase(e); } template<> void ProfileInfoT:: replaceEdge(const Edge &oldedge, const Edge &newedge) { double w; if ((w = getEdgeWeight(newedge)) == MissingValue) { w = getEdgeWeight(oldedge); DEBUG(dbgs() << "Replacing " << oldedge << " with " << newedge << "\n"); } else { w += getEdgeWeight(oldedge); DEBUG(dbgs() << "Adding " << oldedge << " to " << newedge << "\n"); } setEdgeWeight(newedge,w); removeEdge(oldedge); } template<> const BasicBlock *ProfileInfoT:: GetPath(const BasicBlock *Src, const BasicBlock *Dest, Path &P, unsigned Mode) { const BasicBlock *BB = 0; bool hasFoundPath = false; std::queue BFS; BFS.push(Src); while(BFS.size() && !hasFoundPath) { BB = BFS.front(); BFS.pop(); succ_const_iterator Succ = succ_begin(BB), End = succ_end(BB); if (Succ == End) { P[0] = BB; if (Mode & GetPathToExit) { hasFoundPath = true; BB = 0; } } for(;Succ != End; ++Succ) { if (P.find(*Succ) != P.end()) continue; Edge e = getEdge(BB,*Succ); if ((Mode & GetPathWithNewEdges) && (getEdgeWeight(e) != MissingValue)) continue; P[*Succ] = BB; BFS.push(*Succ); if ((Mode & GetPathToDest) && *Succ == Dest) { hasFoundPath = true; BB = *Succ; break; } if ((Mode & GetPathToValue) && (getExecutionCount(*Succ) != MissingValue)) { hasFoundPath = true; BB = *Succ; break; } } } return BB; } template<> void ProfileInfoT:: divertFlow(const Edge &oldedge, const Edge &newedge) { DEBUG(dbgs() << "Diverting " << oldedge << " via " << newedge ); // First check if the old edge was taken, if not, just delete it... if (getEdgeWeight(oldedge) == 0) { removeEdge(oldedge); return; } Path P; P[newedge.first] = 0; P[newedge.second] = newedge.first; const BasicBlock *BB = GetPath(newedge.second,oldedge.second,P,GetPathToExit | GetPathToDest); double w = getEdgeWeight (oldedge); DEBUG(dbgs() << ", Weight: " << format("%.20g",w) << "\n"); do { const BasicBlock *Parent = P.find(BB)->second; Edge e = getEdge(Parent,BB); double oldw = getEdgeWeight(e); double oldc = getExecutionCount(e.first); setEdgeWeight(e, w+oldw); if (Parent != oldedge.first) { setExecutionCount(e.first, w+oldc); } BB = Parent; } while (BB != newedge.first); removeEdge(oldedge); } /// Replaces all occurrences of RmBB in the ProfilingInfo with DestBB. /// This checks all edges of the function the blocks reside in and replaces the /// occurrences of RmBB with DestBB. template<> void ProfileInfoT:: replaceAllUses(const BasicBlock *RmBB, const BasicBlock *DestBB) { DEBUG(dbgs() << "Replacing " << RmBB->getName() << " with " << DestBB->getName() << "\n"); const Function *F = DestBB->getParent(); std::map::iterator J = EdgeInformation.find(F); if (J == EdgeInformation.end()) return; Edge e, newedge; bool erasededge = false; EdgeWeights::iterator I = J->second.begin(), E = J->second.end(); while(I != E) { e = (I++)->first; bool foundedge = false; bool eraseedge = false; if (e.first == RmBB) { if (e.second == DestBB) { eraseedge = true; } else { newedge = getEdge(DestBB, e.second); foundedge = true; } } if (e.second == RmBB) { if (e.first == DestBB) { eraseedge = true; } else { newedge = getEdge(e.first, DestBB); foundedge = true; } } if (foundedge) { replaceEdge(e, newedge); } if (eraseedge) { if (erasededge) { Edge newedge = getEdge(DestBB, DestBB); replaceEdge(e, newedge); } else { removeEdge(e); erasededge = true; } } } } /// Splits an edge in the ProfileInfo and redirects flow over NewBB. /// Since its possible that there is more than one edge in the CFG from FristBB /// to SecondBB its necessary to redirect the flow proporionally. template<> void ProfileInfoT::splitEdge(const BasicBlock *FirstBB, const BasicBlock *SecondBB, const BasicBlock *NewBB, bool MergeIdenticalEdges) { const Function *F = FirstBB->getParent(); std::map::iterator J = EdgeInformation.find(F); if (J == EdgeInformation.end()) return; // Generate edges and read current weight. Edge e = getEdge(FirstBB, SecondBB); Edge n1 = getEdge(FirstBB, NewBB); Edge n2 = getEdge(NewBB, SecondBB); EdgeWeights &ECs = J->second; double w = ECs[e]; int succ_count = 0; if (!MergeIdenticalEdges) { // First count the edges from FristBB to SecondBB, if there is more than // one, only slice out a proporional part for NewBB. for(succ_const_iterator BBI = succ_begin(FirstBB), BBE = succ_end(FirstBB); BBI != BBE; ++BBI) { if (*BBI == SecondBB) succ_count++; } // When the NewBB is completely new, increment the count by one so that // the counts are properly distributed. if (getExecutionCount(NewBB) == ProfileInfo::MissingValue) succ_count++; } else { // When the edges are merged anyway, then redirect all flow. succ_count = 1; } // We know now how many edges there are from FirstBB to SecondBB, reroute a // proportional part of the edge weight over NewBB. double neww = floor(w / succ_count); ECs[n1] += neww; ECs[n2] += neww; BlockInformation[F][NewBB] += neww; if (succ_count == 1) { ECs.erase(e); } else { ECs[e] -= neww; } } template<> void ProfileInfoT::splitBlock(const BasicBlock *Old, const BasicBlock* New) { const Function *F = Old->getParent(); std::map::iterator J = EdgeInformation.find(F); if (J == EdgeInformation.end()) return; DEBUG(dbgs() << "Splitting " << Old->getName() << " to " << New->getName() << "\n"); std::set Edges; for (EdgeWeights::iterator ewi = J->second.begin(), ewe = J->second.end(); ewi != ewe; ++ewi) { Edge old = ewi->first; if (old.first == Old) { Edges.insert(old); } } for (std::set::iterator EI = Edges.begin(), EE = Edges.end(); EI != EE; ++EI) { Edge newedge = getEdge(New, EI->second); replaceEdge(*EI, newedge); } double w = getExecutionCount(Old); setEdgeWeight(getEdge(Old, New), w); setExecutionCount(New, w); } template<> void ProfileInfoT::splitBlock(const BasicBlock *BB, const BasicBlock* NewBB, BasicBlock *const *Preds, unsigned NumPreds) { const Function *F = BB->getParent(); std::map::iterator J = EdgeInformation.find(F); if (J == EdgeInformation.end()) return; DEBUG(dbgs() << "Splitting " << NumPreds << " Edges from " << BB->getName() << " to " << NewBB->getName() << "\n"); // Collect weight that was redirected over NewBB. double newweight = 0; std::set ProcessedPreds; // For all requestes Predecessors. for (unsigned pred = 0; pred < NumPreds; ++pred) { const BasicBlock * Pred = Preds[pred]; if (ProcessedPreds.insert(Pred).second) { // Create edges and read old weight. Edge oldedge = getEdge(Pred, BB); Edge newedge = getEdge(Pred, NewBB); // Remember how much weight was redirected. newweight += getEdgeWeight(oldedge); replaceEdge(oldedge,newedge); } } Edge newedge = getEdge(NewBB,BB); setEdgeWeight(newedge, newweight); setExecutionCount(NewBB, newweight); } template<> void ProfileInfoT::transfer(const Function *Old, const Function *New) { DEBUG(dbgs() << "Replacing Function " << Old->getName() << " with " << New->getName() << "\n"); std::map::iterator J = EdgeInformation.find(Old); if(J != EdgeInformation.end()) { EdgeInformation[New] = J->second; } EdgeInformation.erase(Old); BlockInformation.erase(Old); FunctionInformation.erase(Old); } static double readEdgeOrRemember(ProfileInfo::Edge edge, double w, ProfileInfo::Edge &tocalc, unsigned &uncalc) { if (w == ProfileInfo::MissingValue) { tocalc = edge; uncalc++; return 0; } else { return w; } } template<> bool ProfileInfoT:: CalculateMissingEdge(const BasicBlock *BB, Edge &removed, bool assumeEmptySelf) { Edge edgetocalc; unsigned uncalculated = 0; // collect weights of all incoming and outgoing edges, rememer edges that // have no value double incount = 0; SmallSet pred_visited; const_pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB); if (bbi==bbe) { Edge e = getEdge(0,BB); incount += readEdgeOrRemember(e, getEdgeWeight(e) ,edgetocalc,uncalculated); } for (;bbi != bbe; ++bbi) { if (pred_visited.insert(*bbi)) { Edge e = getEdge(*bbi,BB); incount += readEdgeOrRemember(e, getEdgeWeight(e) ,edgetocalc,uncalculated); } } double outcount = 0; SmallSet succ_visited; succ_const_iterator sbbi = succ_begin(BB), sbbe = succ_end(BB); if (sbbi==sbbe) { Edge e = getEdge(BB,0); if (getEdgeWeight(e) == MissingValue) { double w = getExecutionCount(BB); if (w != MissingValue) { setEdgeWeight(e,w); removed = e; } } outcount += readEdgeOrRemember(e, getEdgeWeight(e), edgetocalc, uncalculated); } for (;sbbi != sbbe; ++sbbi) { if (succ_visited.insert(*sbbi)) { Edge e = getEdge(BB,*sbbi); outcount += readEdgeOrRemember(e, getEdgeWeight(e), edgetocalc, uncalculated); } } // if exactly one edge weight was missing, calculate it and remove it from // spanning tree if (uncalculated == 0 ) { return true; } else if (uncalculated == 1) { if (incount < outcount) { EdgeInformation[BB->getParent()][edgetocalc] = outcount-incount; } else { EdgeInformation[BB->getParent()][edgetocalc] = incount-outcount; } DEBUG(dbgs() << "--Calc Edge Counter for " << edgetocalc << ": " << format("%.20g", getEdgeWeight(edgetocalc)) << "\n"); removed = edgetocalc; return true; } else if (uncalculated == 2 && assumeEmptySelf && edgetocalc.first == edgetocalc.second && incount == outcount) { setEdgeWeight(edgetocalc, incount * 10); removed = edgetocalc; return true; } else { return false; } } static void readEdge(ProfileInfo *PI, ProfileInfo::Edge e, double &calcw, std::set &misscount) { double w = PI->getEdgeWeight(e); if (w != ProfileInfo::MissingValue) { calcw += w; } else { misscount.insert(e); } } template<> bool ProfileInfoT::EstimateMissingEdges(const BasicBlock *BB) { double inWeight = 0; std::set inMissing; std::set ProcessedPreds; const_pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB); if (bbi == bbe) { readEdge(this,getEdge(0,BB),inWeight,inMissing); } for( ; bbi != bbe; ++bbi ) { if (ProcessedPreds.insert(*bbi).second) { readEdge(this,getEdge(*bbi,BB),inWeight,inMissing); } } double outWeight = 0; std::set outMissing; std::set ProcessedSuccs; succ_const_iterator sbbi = succ_begin(BB), sbbe = succ_end(BB); if (sbbi == sbbe) readEdge(this,getEdge(BB,0),outWeight,outMissing); for ( ; sbbi != sbbe; ++sbbi ) { if (ProcessedSuccs.insert(*sbbi).second) { readEdge(this,getEdge(BB,*sbbi),outWeight,outMissing); } } double share; std::set::iterator ei,ee; if (inMissing.size() == 0 && outMissing.size() > 0) { ei = outMissing.begin(); ee = outMissing.end(); share = inWeight/outMissing.size(); setExecutionCount(BB,inWeight); } else if (inMissing.size() > 0 && outMissing.size() == 0 && outWeight == 0) { ei = inMissing.begin(); ee = inMissing.end(); share = 0; setExecutionCount(BB,0); } else if (inMissing.size() == 0 && outMissing.size() == 0) { setExecutionCount(BB,outWeight); return true; } else { return false; } for ( ; ei != ee; ++ei ) { setEdgeWeight(*ei,share); } return true; } template<> void ProfileInfoT::repair(const Function *F) { // if (getExecutionCount(&(F->getEntryBlock())) == 0) { // for (Function::const_iterator FI = F->begin(), FE = F->end(); // FI != FE; ++FI) { // const BasicBlock* BB = &(*FI); // { // const_pred_iterator NBB = pred_begin(BB), End = pred_end(BB); // if (NBB == End) { // setEdgeWeight(getEdge(0,BB),0); // } // for(;NBB != End; ++NBB) { // setEdgeWeight(getEdge(*NBB,BB),0); // } // } // { // succ_const_iterator NBB = succ_begin(BB), End = succ_end(BB); // if (NBB == End) { // setEdgeWeight(getEdge(0,BB),0); // } // for(;NBB != End; ++NBB) { // setEdgeWeight(getEdge(*NBB,BB),0); // } // } // } // return; // } // The set of BasicBlocks that are still unvisited. std::set Unvisited; // The set of return edges (Edges with no successors). std::set ReturnEdges; double ReturnWeight = 0; // First iterate over the whole function and collect: // 1) The blocks in this function in the Unvisited set. // 2) The return edges in the ReturnEdges set. // 3) The flow that is leaving the function already via return edges. // Data structure for searching the function. std::queue BFS; const BasicBlock *BB = &(F->getEntryBlock()); BFS.push(BB); Unvisited.insert(BB); while (BFS.size()) { BB = BFS.front(); BFS.pop(); succ_const_iterator NBB = succ_begin(BB), End = succ_end(BB); if (NBB == End) { Edge e = getEdge(BB,0); double w = getEdgeWeight(e); if (w == MissingValue) { // If the return edge has no value, try to read value from block. double bw = getExecutionCount(BB); if (bw != MissingValue) { setEdgeWeight(e,bw); ReturnWeight += bw; } else { // If both return edge and block provide no value, collect edge. ReturnEdges.insert(e); } } else { // If the return edge has a proper value, collect it. ReturnWeight += w; } } for (;NBB != End; ++NBB) { if (Unvisited.insert(*NBB).second) { BFS.push(*NBB); } } } while (Unvisited.size() > 0) { unsigned oldUnvisitedCount = Unvisited.size(); bool FoundPath = false; // If there is only one edge left, calculate it. if (ReturnEdges.size() == 1) { ReturnWeight = getExecutionCount(&(F->getEntryBlock())) - ReturnWeight; Edge e = *ReturnEdges.begin(); setEdgeWeight(e,ReturnWeight); setExecutionCount(e.first,ReturnWeight); Unvisited.erase(e.first); ReturnEdges.erase(e); continue; } // Calculate all blocks where only one edge is missing, this may also // resolve furhter return edges. std::set::iterator FI = Unvisited.begin(), FE = Unvisited.end(); while(FI != FE) { const BasicBlock *BB = *FI; ++FI; Edge e; if(CalculateMissingEdge(BB,e,true)) { if (BlockInformation[F].find(BB) == BlockInformation[F].end()) { setExecutionCount(BB,getExecutionCount(BB)); } Unvisited.erase(BB); if (e.first != 0 && e.second == 0) { ReturnEdges.erase(e); ReturnWeight += getEdgeWeight(e); } } } if (oldUnvisitedCount > Unvisited.size()) continue; // Estimate edge weights by dividing the flow proportionally. FI = Unvisited.begin(), FE = Unvisited.end(); while(FI != FE) { const BasicBlock *BB = *FI; ++FI; const BasicBlock *Dest = 0; bool AllEdgesHaveSameReturn = true; // Check each Successor, these must all end up in the same or an empty // return block otherwise its dangerous to do an estimation on them. for (succ_const_iterator Succ = succ_begin(BB), End = succ_end(BB); Succ != End; ++Succ) { Path P; GetPath(*Succ, 0, P, GetPathToExit); if (Dest && Dest != P[0]) { AllEdgesHaveSameReturn = false; } Dest = P[0]; } if (AllEdgesHaveSameReturn) { if(EstimateMissingEdges(BB)) { Unvisited.erase(BB); break; } } } if (oldUnvisitedCount > Unvisited.size()) continue; // Check if there is a path to an block that has a known value and redirect // flow accordingly. FI = Unvisited.begin(), FE = Unvisited.end(); while(FI != FE && !FoundPath) { // Fetch path. const BasicBlock *BB = *FI; ++FI; Path P; const BasicBlock *Dest = GetPath(BB, 0, P, GetPathToValue); // Calculate incoming flow. double iw = 0; unsigned inmissing = 0; unsigned incount = 0; unsigned invalid = 0; std::set Processed; for (const_pred_iterator NBB = pred_begin(BB), End = pred_end(BB); NBB != End; ++NBB) { if (Processed.insert(*NBB).second) { Edge e = getEdge(*NBB, BB); double ew = getEdgeWeight(e); if (ew != MissingValue) { iw += ew; invalid++; } else { // If the path contains the successor, this means its a backedge, // do not count as missing. if (P.find(*NBB) == P.end()) inmissing++; } incount++; } } if (inmissing == incount) continue; if (invalid == 0) continue; // Subtract (already) outgoing flow. Processed.clear(); for (succ_const_iterator NBB = succ_begin(BB), End = succ_end(BB); NBB != End; ++NBB) { if (Processed.insert(*NBB).second) { Edge e = getEdge(BB, *NBB); double ew = getEdgeWeight(e); if (ew != MissingValue) { iw -= ew; } } } if (iw < 0) continue; // Check the receiving end of the path if it can handle the flow. double ow = getExecutionCount(Dest); Processed.clear(); for (succ_const_iterator NBB = succ_begin(BB), End = succ_end(BB); NBB != End; ++NBB) { if (Processed.insert(*NBB).second) { Edge e = getEdge(BB, *NBB); double ew = getEdgeWeight(e); if (ew != MissingValue) { ow -= ew; } } } if (ow < 0) continue; // Determine how much flow shall be used. double ew = getEdgeWeight(getEdge(P[Dest],Dest)); if (ew != MissingValue) { ew = ew Processed; for (const_pred_iterator NBB = pred_begin(BB), End = pred_end(BB); NBB != End; ++NBB) { if (Processed.insert(*NBB).second) { Edge e = getEdge(*NBB, BB); double ew = getEdgeWeight(e); if (ew != MissingValue) { iw += ew; } } } setEdgeWeight(e,iw * 10); FoundPath = true; } } } if (FoundPath) continue; // Determine backedges, set them to zero. FI = Unvisited.begin(), FE = Unvisited.end(); while(FI != FE && !FoundPath) { const BasicBlock *BB = *FI; ++FI; const BasicBlock *Dest = 0; Path P; bool BackEdgeFound = false; for (const_pred_iterator NBB = pred_begin(BB), End = pred_end(BB); NBB != End; ++NBB) { Dest = GetPath(BB, *NBB, P, GetPathToDest | GetPathWithNewEdges); if (Dest == *NBB) { BackEdgeFound = true; break; } } if (BackEdgeFound) { Edge e = getEdge(Dest,BB); double w = getEdgeWeight(e); if (w == MissingValue) { setEdgeWeight(e,0); FoundPath = true; } do { Edge e = getEdge(P[Dest], Dest); double w = getEdgeWeight(e); if (w == MissingValue) { setEdgeWeight(e,0); FoundPath = true; } Dest = P[Dest]; } while (Dest != BB); } } if (FoundPath) continue; // Channel flow to return block. FI = Unvisited.begin(), FE = Unvisited.end(); while(FI != FE && !FoundPath) { const BasicBlock *BB = *FI; ++FI; Path P; const BasicBlock *Dest = GetPath(BB, 0, P, GetPathToExit | GetPathWithNewEdges); Dest = P[0]; if (!Dest) continue; if (getEdgeWeight(getEdge(Dest,0)) == MissingValue) { // Calculate incoming flow. double iw = 0; std::set Processed; for (const_pred_iterator NBB = pred_begin(BB), End = pred_end(BB); NBB != End; ++NBB) { if (Processed.insert(*NBB).second) { Edge e = getEdge(*NBB, BB); double ew = getEdgeWeight(e); if (ew != MissingValue) { iw += ew; } } } do { Edge e = getEdge(P[Dest], Dest); double w = getEdgeWeight(e); if (w == MissingValue) { setEdgeWeight(e,iw); FoundPath = true; } else { assert(0 && "Edge should not have value already!"); } Dest = P[Dest]; } while (Dest != BB); } } if (FoundPath) continue; // Speculatively set edges to zero. FI = Unvisited.begin(), FE = Unvisited.end(); while(FI != FE && !FoundPath) { const BasicBlock *BB = *FI; ++FI; for (const_pred_iterator NBB = pred_begin(BB), End = pred_end(BB); NBB != End; ++NBB) { Edge e = getEdge(*NBB,BB); double w = getEdgeWeight(e); if (w == MissingValue) { setEdgeWeight(e,0); FoundPath = true; break; } } } if (FoundPath) continue; errs() << "{"; FI = Unvisited.begin(), FE = Unvisited.end(); while(FI != FE) { const BasicBlock *BB = *FI; ++FI; dbgs() << BB->getName(); if (FI != FE) dbgs() << ","; } errs() << "}"; errs() << "ASSERT: could not repair function"; assert(0 && "could not repair function"); } EdgeWeights J = EdgeInformation[F]; for (EdgeWeights::iterator EI = J.begin(), EE = J.end(); EI != EE; ++EI) { Edge e = EI->first; bool SuccFound = false; if (e.first != 0) { succ_const_iterator NBB = succ_begin(e.first), End = succ_end(e.first); if (NBB == End) { if (0 == e.second) { SuccFound = true; } } for (;NBB != End; ++NBB) { if (*NBB == e.second) { SuccFound = true; break; } } if (!SuccFound) { removeEdge(e); } } } } raw_ostream& operator<<(raw_ostream &O, const Function *F) { return O << F->getName(); } raw_ostream& operator<<(raw_ostream &O, const MachineFunction *MF) { return O << MF->getFunction()->getName() << "(MF)"; } raw_ostream& operator<<(raw_ostream &O, const BasicBlock *BB) { return O << BB->getName(); } raw_ostream& operator<<(raw_ostream &O, const MachineBasicBlock *MBB) { return O << MBB->getBasicBlock()->getName() << "(MB)"; } raw_ostream& operator<<(raw_ostream &O, std::pair E) { O << "("; if (E.first) O << E.first; else O << "0"; O << ","; if (E.second) O << E.second; else O << "0"; return O << ")"; } raw_ostream& operator<<(raw_ostream &O, std::pair E) { O << "("; if (E.first) O << E.first; else O << "0"; O << ","; if (E.second) O << E.second; else O << "0"; return O << ")"; } } // namespace llvm //===----------------------------------------------------------------------===// // NoProfile ProfileInfo implementation // namespace { struct NoProfileInfo : public ImmutablePass, public ProfileInfo { static char ID; // Class identification, replacement for typeinfo NoProfileInfo() : ImmutablePass(ID) { initializeNoProfileInfoPass(*PassRegistry::getPassRegistry()); } /// getAdjustedAnalysisPointer - This method is used when a pass implements /// an analysis interface through multiple inheritance. If needed, it /// should override this to adjust the this pointer as needed for the /// specified pass info. virtual void *getAdjustedAnalysisPointer(AnalysisID PI) { if (PI == &ProfileInfo::ID) return (ProfileInfo*)this; return this; } virtual const char *getPassName() const { return "NoProfileInfo"; } }; } // End of anonymous namespace char NoProfileInfo::ID = 0; // Register this pass... INITIALIZE_AG_PASS(NoProfileInfo, ProfileInfo, "no-profile", "No Profile Information", false, true, true) ImmutablePass *llvm::createNoProfileInfoPass() { return new NoProfileInfo(); }