//===-- WriteInst.cpp - Functions for writing instructions -------*- C++ -*--=// // // This file implements the routines for encoding instruction opcodes to a // bytecode stream. // // Note that the performance of this library is not terribly important, because // it shouldn't be used by JIT type applications... so it is not a huge focus // at least. :) // //===----------------------------------------------------------------------===// #include "WriterInternals.h" #include "llvm/Module.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "llvm/Instruction.h" #include "llvm/DerivedTypes.h" #include "llvm/Tools/DataTypes.h" #include typedef unsigned char uchar; // outputInstructionFormat0 - Output those wierd instructions that have a large // number of operands or have large operands themselves... // // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg] // static void outputInstructionFormat0(const Instruction *I, const SlotCalculator &Table, unsigned Type, vector &Out) { // Opcode must have top two bits clear... output_vbr(I->getInstType(), Out); // Instruction Opcode ID output_vbr(Type, Out); // Result type unsigned NumArgs; // Count the number of arguments to the instruction for (NumArgs = 0; I->getOperand(NumArgs); NumArgs++) /*empty*/; output_vbr(NumArgs, Out); for (unsigned i = 0; const Value *N = I->getOperand(i); i++) { assert(i < NumArgs && "Count of arguments failed!"); int Slot = Table.getValSlot(N); output_vbr((unsigned)Slot, Out); } align32(Out); // We must maintain correct alignment! } // outputInstructionFormat1 - Output one operand instructions, knowing that no // operand index is >= 2^12. // static void outputInstructionFormat1(const Instruction *I, const SlotCalculator &Table, int *Slots, unsigned Type, vector &Out) { unsigned IType = I->getInstType(); // Instruction Opcode ID // bits Instruction format: // -------------------------- // 31-30: Opcode type, fixed to 1. // 29-24: Opcode // 23-12: Resulting type plane // 11- 0: Operand #1 (if set to (2^12-1), then zero operands) // unsigned Opcode = (1 << 30) | (IType << 24) | (Type << 12) | Slots[0]; // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; output(Opcode, Out); } // outputInstructionFormat2 - Output two operand instructions, knowing that no // operand index is >= 2^8. // static void outputInstructionFormat2(const Instruction *I, const SlotCalculator &Table, int *Slots, unsigned Type, vector &Out) { unsigned IType = I->getInstType(); // Instruction Opcode ID // bits Instruction format: // -------------------------- // 31-30: Opcode type, fixed to 2. // 29-24: Opcode // 23-16: Resulting type plane // 15- 8: Operand #1 // 7- 0: Operand #2 // unsigned Opcode = (2 << 30) | (IType << 24) | (Type << 16) | (Slots[0] << 8) | (Slots[1] << 0); // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " // << Slots[1] << endl; output(Opcode, Out); } // outputInstructionFormat3 - Output three operand instructions, knowing that no // operand index is >= 2^6. // static void outputInstructionFormat3(const Instruction *I, const SlotCalculator &Table, int *Slots, unsigned Type, vector &Out) { unsigned IType = I->getInstType(); // Instruction Opcode ID // bits Instruction format: // -------------------------- // 31-30: Opcode type, fixed to 3 // 29-24: Opcode // 23-18: Resulting type plane // 17-12: Operand #1 // 11- 6: Operand #2 // 5- 0: Operand #3 // unsigned Opcode = (3 << 30) | (IType << 24) | (Type << 18) | (Slots[0] << 12) | (Slots[1] << 6) | (Slots[2] << 0); // cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " // << Slots[1] << " " << Slots[2] << endl; output(Opcode, Out); } bool BytecodeWriter::processInstruction(const Instruction *I) { assert(I->getInstType() < 64 && "Opcode too big???"); unsigned NumOperands = 0; int MaxOpSlot = 0; int Slots[3]; Slots[0] = (1 << 12)-1; const Value *Def; while ((Def = I->getOperand(NumOperands))) { int slot = Table.getValSlot(Def); assert(slot != -1 && "Broken bytecode!"); if (slot > MaxOpSlot) MaxOpSlot = slot; if (NumOperands < 3) Slots[NumOperands] = slot; NumOperands++; } // Figure out which type to encode with the instruction. Typically we want // the type of the first parameter, as opposed to the type of the instruction // (for example, with setcc, we always know it returns bool, but the type of // the first param is actually interesting). But if we have no arguments // we take the type of the instruction itself. // const Type *Ty; if (NumOperands) Ty = I->getOperand(0)->getType(); else Ty = I->getType(); unsigned Type; int Slot = Table.getValSlot(Ty); assert(Slot != -1 && "Type not available!!?!"); Type = (unsigned)Slot; // Decide which instruction encoding to use. This is determined primarily by // the number of operands, and secondarily by whether or not the max operand // will fit into the instruction encoding. More operands == fewer bits per // operand. // switch (NumOperands) { case 0: case 1: if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops outputInstructionFormat1(I, Table, Slots, Type, Out); return false; } break; case 2: if (MaxOpSlot < (1 << 8)) { outputInstructionFormat2(I, Table, Slots, Type, Out); return false; } break; case 3: if (MaxOpSlot < (1 << 6)) { outputInstructionFormat3(I, Table, Slots, Type, Out); return false; } break; } outputInstructionFormat0(I, Table, Type, Out); return false; }