//===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AggressiveAntiDepBreaker class, which // implements register anti-dependence breaking during post-RA // scheduling. It attempts to break all anti-dependencies within a // block. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "post-RA-sched" #include "AggressiveAntiDepBreaker.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod static cl::opt DebugDiv("agg-antidep-debugdiv", cl::desc("Debug control for aggressive anti-dep breaker"), cl::init(0), cl::Hidden); static cl::opt DebugMod("agg-antidep-debugmod", cl::desc("Debug control for aggressive anti-dep breaker"), cl::init(0), cl::Hidden); AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, MachineBasicBlock *BB) : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), DefIndices(TargetRegs, 0) { const unsigned BBSize = BB->size(); for (unsigned i = 0; i < NumTargetRegs; ++i) { // Initialize all registers to be in their own group. Initially we // assign the register to the same-indexed GroupNode. GroupNodeIndices[i] = i; // Initialize the indices to indicate that no registers are live. KillIndices[i] = ~0u; DefIndices[i] = BBSize; } } unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { unsigned Node = GroupNodeIndices[Reg]; while (GroupNodes[Node] != Node) Node = GroupNodes[Node]; return Node; } void AggressiveAntiDepState::GetGroupRegs( unsigned Group, std::vector &Regs, std::multimap *RegRefs) { for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) Regs.push_back(Reg); } } unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); // find group for each register unsigned Group1 = GetGroup(Reg1); unsigned Group2 = GetGroup(Reg2); // if either group is 0, then that must become the parent unsigned Parent = (Group1 == 0) ? Group1 : Group2; unsigned Other = (Parent == Group1) ? Group2 : Group1; GroupNodes.at(Other) = Parent; return Parent; } unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { // Create a new GroupNode for Reg. Reg's existing GroupNode must // stay as is because there could be other GroupNodes referring to // it. unsigned idx = GroupNodes.size(); GroupNodes.push_back(idx); GroupNodeIndices[Reg] = idx; return idx; } bool AggressiveAntiDepState::IsLive(unsigned Reg) { // KillIndex must be defined and DefIndex not defined for a register // to be live. return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); } AggressiveAntiDepBreaker:: AggressiveAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI, TargetSubtargetInfo::RegClassVector& CriticalPathRCs) : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), TII(MF.getTarget().getInstrInfo()), TRI(MF.getTarget().getRegisterInfo()), RegClassInfo(RCI), State(NULL) { /* Collect a bitset of all registers that are only broken if they are on the critical path. */ for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); if (CriticalPathSet.none()) CriticalPathSet = CPSet; else CriticalPathSet |= CPSet; } DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); DEBUG(for (int r = CriticalPathSet.find_first(); r != -1; r = CriticalPathSet.find_next(r)) dbgs() << " " << TRI->getName(r)); DEBUG(dbgs() << '\n'); } AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { delete State; } void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { assert(State == NULL); State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); bool IsReturnBlock = (!BB->empty() && BB->back().isReturn()); std::vector &KillIndices = State->GetKillIndices(); std::vector &DefIndices = State->GetDefIndices(); // Examine the live-in regs of all successors. for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { unsigned Reg = *AI; State->UnionGroups(Reg, 0); KillIndices[Reg] = BB->size(); DefIndices[Reg] = ~0u; } } // Mark live-out callee-saved registers. In a return block this is // all callee-saved registers. In non-return this is any // callee-saved register that is not saved in the prolog. const MachineFrameInfo *MFI = MF.getFrameInfo(); BitVector Pristine = MFI->getPristineRegs(BB); for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) { unsigned Reg = *I; if (!IsReturnBlock && !Pristine.test(Reg)) continue; for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { unsigned AliasReg = *AI; State->UnionGroups(AliasReg, 0); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = ~0u; } } } void AggressiveAntiDepBreaker::FinishBlock() { delete State; State = NULL; } void AggressiveAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, unsigned InsertPosIndex) { assert(Count < InsertPosIndex && "Instruction index out of expected range!"); std::set PassthruRegs; GetPassthruRegs(MI, PassthruRegs); PrescanInstruction(MI, Count, PassthruRegs); ScanInstruction(MI, Count); DEBUG(dbgs() << "Observe: "); DEBUG(MI->dump()); DEBUG(dbgs() << "\tRegs:"); std::vector &DefIndices = State->GetDefIndices(); for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { // If Reg is current live, then mark that it can't be renamed as // we don't know the extent of its live-range anymore (now that it // has been scheduled). If it is not live but was defined in the // previous schedule region, then set its def index to the most // conservative location (i.e. the beginning of the previous // schedule region). if (State->IsLive(Reg)) { DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg) << "->g0(region live-out)"); State->UnionGroups(Reg, 0); } else if ((DefIndices[Reg] < InsertPosIndex) && (DefIndices[Reg] >= Count)) { DefIndices[Reg] = Count; } } DEBUG(dbgs() << '\n'); } bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr *MI, MachineOperand& MO) { if (!MO.isReg() || !MO.isImplicit()) return false; unsigned Reg = MO.getReg(); if (Reg == 0) return false; MachineOperand *Op = NULL; if (MO.isDef()) Op = MI->findRegisterUseOperand(Reg, true); else Op = MI->findRegisterDefOperand(Reg); return((Op != NULL) && Op->isImplicit()); } void AggressiveAntiDepBreaker::GetPassthruRegs(MachineInstr *MI, std::set& PassthruRegs) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; if ((MO.isDef() && MI->isRegTiedToUseOperand(i)) || IsImplicitDefUse(MI, MO)) { const unsigned Reg = MO.getReg(); for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) PassthruRegs.insert(*SubRegs); } } } /// AntiDepEdges - Return in Edges the anti- and output- dependencies /// in SU that we want to consider for breaking. static void AntiDepEdges(const SUnit *SU, std::vector& Edges) { SmallSet RegSet; for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); P != PE; ++P) { if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) { unsigned Reg = P->getReg(); if (RegSet.count(Reg) == 0) { Edges.push_back(&*P); RegSet.insert(Reg); } } } } /// CriticalPathStep - Return the next SUnit after SU on the bottom-up /// critical path. static const SUnit *CriticalPathStep(const SUnit *SU) { const SDep *Next = 0; unsigned NextDepth = 0; // Find the predecessor edge with the greatest depth. if (SU != 0) { for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); P != PE; ++P) { const SUnit *PredSU = P->getSUnit(); unsigned PredLatency = P->getLatency(); unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; // In the case of a latency tie, prefer an anti-dependency edge over // other types of edges. if (NextDepth < PredTotalLatency || (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { NextDepth = PredTotalLatency; Next = &*P; } } } return (Next) ? Next->getSUnit() : 0; } void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, const char *tag, const char *header, const char *footer) { std::vector &KillIndices = State->GetKillIndices(); std::vector &DefIndices = State->GetDefIndices(); std::multimap& RegRefs = State->GetRegRefs(); if (!State->IsLive(Reg)) { KillIndices[Reg] = KillIdx; DefIndices[Reg] = ~0u; RegRefs.erase(Reg); State->LeaveGroup(Reg); DEBUG(if (header != NULL) { dbgs() << header << TRI->getName(Reg); header = NULL; }); DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); } // Repeat for subregisters. for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubregReg = *SubRegs; if (!State->IsLive(SubregReg)) { KillIndices[SubregReg] = KillIdx; DefIndices[SubregReg] = ~0u; RegRefs.erase(SubregReg); State->LeaveGroup(SubregReg); DEBUG(if (header != NULL) { dbgs() << header << TRI->getName(Reg); header = NULL; }); DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" << State->GetGroup(SubregReg) << tag); } } DEBUG(if ((header == NULL) && (footer != NULL)) dbgs() << footer); } void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI, unsigned Count, std::set& PassthruRegs) { std::vector &DefIndices = State->GetDefIndices(); std::multimap& RegRefs = State->GetRegRefs(); // Handle dead defs by simulating a last-use of the register just // after the def. A dead def can occur because the def is truly // dead, or because only a subregister is live at the def. If we // don't do this the dead def will be incorrectly merged into the // previous def. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); } DEBUG(dbgs() << "\tDef Groups:"); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg)); // If MI's defs have a special allocation requirement, don't allow // any def registers to be changed. Also assume all registers // defined in a call must not be changed (ABI). if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI)) { DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); State->UnionGroups(Reg, 0); } // Any aliased that are live at this point are completely or // partially defined here, so group those aliases with Reg. for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { unsigned AliasReg = *AI; if (State->IsLive(AliasReg)) { State->UnionGroups(Reg, AliasReg); DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " << TRI->getName(AliasReg) << ")"); } } // Note register reference... const TargetRegisterClass *RC = NULL; if (i < MI->getDesc().getNumOperands()) RC = TII->getRegClass(MI->getDesc(), i, TRI, MF); AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; RegRefs.insert(std::make_pair(Reg, RR)); } DEBUG(dbgs() << '\n'); // Scan the register defs for this instruction and update // live-ranges. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // Ignore KILLs and passthru registers for liveness... if (MI->isKill() || (PassthruRegs.count(Reg) != 0)) continue; // Update def for Reg and aliases. for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) DefIndices[*AI] = Count; } } void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI, unsigned Count) { DEBUG(dbgs() << "\tUse Groups:"); std::multimap& RegRefs = State->GetRegRefs(); // If MI's uses have special allocation requirement, don't allow // any use registers to be changed. Also assume all registers // used in a call must not be changed (ABI). // FIXME: The issue with predicated instruction is more complex. We are being // conservatively here because the kill markers cannot be trusted after // if-conversion: // %R6 = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] // ... // STR %R0, %R6, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] // %R6 = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] // STR %R0, %R6, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) // // The first R6 kill is not really a kill since it's killed by a predicated // instruction which may not be executed. The second R6 def may or may not // re-define R6 so it's not safe to change it since the last R6 use cannot be // changed. bool Special = MI->isCall() || MI->hasExtraSrcRegAllocReq() || TII->isPredicated(MI); // Scan the register uses for this instruction and update // live-ranges, groups and RegRefs. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg)); // It wasn't previously live but now it is, this is a kill. Forget // the previous live-range information and start a new live-range // for the register. HandleLastUse(Reg, Count, "(last-use)"); if (Special) { DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); State->UnionGroups(Reg, 0); } // Note register reference... const TargetRegisterClass *RC = NULL; if (i < MI->getDesc().getNumOperands()) RC = TII->getRegClass(MI->getDesc(), i, TRI, MF); AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; RegRefs.insert(std::make_pair(Reg, RR)); } DEBUG(dbgs() << '\n'); // Form a group of all defs and uses of a KILL instruction to ensure // that all registers are renamed as a group. if (MI->isKill()) { DEBUG(dbgs() << "\tKill Group:"); unsigned FirstReg = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (FirstReg != 0) { DEBUG(dbgs() << "=" << TRI->getName(Reg)); State->UnionGroups(FirstReg, Reg); } else { DEBUG(dbgs() << " " << TRI->getName(Reg)); FirstReg = Reg; } } DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); } } BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { BitVector BV(TRI->getNumRegs(), false); bool first = true; // Check all references that need rewriting for Reg. For each, use // the corresponding register class to narrow the set of registers // that are appropriate for renaming. std::pair::iterator, std::multimap::iterator> Range = State->GetRegRefs().equal_range(Reg); for (std::multimap::iterator Q = Range.first, QE = Range.second; Q != QE; ++Q) { const TargetRegisterClass *RC = Q->second.RC; if (RC == NULL) continue; BitVector RCBV = TRI->getAllocatableSet(MF, RC); if (first) { BV |= RCBV; first = false; } else { BV &= RCBV; } DEBUG(dbgs() << " " << RC->getName()); } return BV; } bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( unsigned AntiDepGroupIndex, RenameOrderType& RenameOrder, std::map &RenameMap) { std::vector &KillIndices = State->GetKillIndices(); std::vector &DefIndices = State->GetDefIndices(); std::multimap& RegRefs = State->GetRegRefs(); // Collect all referenced registers in the same group as // AntiDepReg. These all need to be renamed together if we are to // break the anti-dependence. std::vector Regs; State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); assert(Regs.size() > 0 && "Empty register group!"); if (Regs.size() == 0) return false; // Find the "superest" register in the group. At the same time, // collect the BitVector of registers that can be used to rename // each register. DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex << ":\n"); std::map RenameRegisterMap; unsigned SuperReg = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { unsigned Reg = Regs[i]; if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) SuperReg = Reg; // If Reg has any references, then collect possible rename regs if (RegRefs.count(Reg) > 0) { DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":"); BitVector BV = GetRenameRegisters(Reg); RenameRegisterMap.insert(std::pair(Reg, BV)); DEBUG(dbgs() << " ::"); DEBUG(for (int r = BV.find_first(); r != -1; r = BV.find_next(r)) dbgs() << " " << TRI->getName(r)); DEBUG(dbgs() << "\n"); } } // All group registers should be a subreg of SuperReg. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { unsigned Reg = Regs[i]; if (Reg == SuperReg) continue; bool IsSub = TRI->isSubRegister(SuperReg, Reg); assert(IsSub && "Expecting group subregister"); if (!IsSub) return false; } #ifndef NDEBUG // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod if (DebugDiv > 0) { static int renamecnt = 0; if (renamecnt++ % DebugDiv != DebugMod) return false; dbgs() << "*** Performing rename " << TRI->getName(SuperReg) << " for debug ***\n"; } #endif // Check each possible rename register for SuperReg in round-robin // order. If that register is available, and the corresponding // registers are available for the other group subregisters, then we // can use those registers to rename. // FIXME: Using getMinimalPhysRegClass is very conservative. We should // check every use of the register and find the largest register class // that can be used in all of them. const TargetRegisterClass *SuperRC = TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); ArrayRef Order = RegClassInfo.getOrder(SuperRC); if (Order.empty()) { DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); return false; } DEBUG(dbgs() << "\tFind Registers:"); if (RenameOrder.count(SuperRC) == 0) RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); unsigned OrigR = RenameOrder[SuperRC]; unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); unsigned R = OrigR; do { if (R == 0) R = Order.size(); --R; const unsigned NewSuperReg = Order[R]; // Don't consider non-allocatable registers if (!MRI.isAllocatable(NewSuperReg)) continue; // Don't replace a register with itself. if (NewSuperReg == SuperReg) continue; DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':'); RenameMap.clear(); // For each referenced group register (which must be a SuperReg or // a subregister of SuperReg), find the corresponding subregister // of NewSuperReg and make sure it is free to be renamed. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { unsigned Reg = Regs[i]; unsigned NewReg = 0; if (Reg == SuperReg) { NewReg = NewSuperReg; } else { unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); if (NewSubRegIdx != 0) NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); } DEBUG(dbgs() << " " << TRI->getName(NewReg)); // Check if Reg can be renamed to NewReg. BitVector BV = RenameRegisterMap[Reg]; if (!BV.test(NewReg)) { DEBUG(dbgs() << "(no rename)"); goto next_super_reg; } // If NewReg is dead and NewReg's most recent def is not before // Regs's kill, it's safe to replace Reg with NewReg. We // must also check all aliases of NewReg, because we can't define a // register when any sub or super is already live. if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { DEBUG(dbgs() << "(live)"); goto next_super_reg; } else { bool found = false; for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { unsigned AliasReg = *AI; if (State->IsLive(AliasReg) || (KillIndices[Reg] > DefIndices[AliasReg])) { DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)"); found = true; break; } } if (found) goto next_super_reg; } // Record that 'Reg' can be renamed to 'NewReg'. RenameMap.insert(std::pair(Reg, NewReg)); } // If we fall-out here, then every register in the group can be // renamed, as recorded in RenameMap. RenameOrder.erase(SuperRC); RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); DEBUG(dbgs() << "]\n"); return true; next_super_reg: DEBUG(dbgs() << ']'); } while (R != EndR); DEBUG(dbgs() << '\n'); // No registers are free and available! return false; } /// BreakAntiDependencies - Identifiy anti-dependencies within the /// ScheduleDAG and break them by renaming registers. /// unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( const std::vector& SUnits, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned InsertPosIndex, DbgValueVector &DbgValues) { std::vector &KillIndices = State->GetKillIndices(); std::vector &DefIndices = State->GetDefIndices(); std::multimap& RegRefs = State->GetRegRefs(); // The code below assumes that there is at least one instruction, // so just duck out immediately if the block is empty. if (SUnits.empty()) return 0; // For each regclass the next register to use for renaming. RenameOrderType RenameOrder; // ...need a map from MI to SUnit. std::map MISUnitMap; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { const SUnit *SU = &SUnits[i]; MISUnitMap.insert(std::pair(SU->getInstr(), SU)); } // Track progress along the critical path through the SUnit graph as // we walk the instructions. This is needed for regclasses that only // break critical-path anti-dependencies. const SUnit *CriticalPathSU = 0; MachineInstr *CriticalPathMI = 0; if (CriticalPathSet.any()) { for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { const SUnit *SU = &SUnits[i]; if (!CriticalPathSU || ((SU->getDepth() + SU->Latency) > (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { CriticalPathSU = SU; } } CriticalPathMI = CriticalPathSU->getInstr(); } #ifndef NDEBUG DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); DEBUG(dbgs() << "Available regs:"); for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { if (!State->IsLive(Reg)) DEBUG(dbgs() << " " << TRI->getName(Reg)); } DEBUG(dbgs() << '\n'); #endif // Attempt to break anti-dependence edges. Walk the instructions // from the bottom up, tracking information about liveness as we go // to help determine which registers are available. unsigned Broken = 0; unsigned Count = InsertPosIndex - 1; for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { MachineInstr *MI = --I; if (MI->isDebugValue()) continue; DEBUG(dbgs() << "Anti: "); DEBUG(MI->dump()); std::set PassthruRegs; GetPassthruRegs(MI, PassthruRegs); // Process the defs in MI... PrescanInstruction(MI, Count, PassthruRegs); // The dependence edges that represent anti- and output- // dependencies that are candidates for breaking. std::vector Edges; const SUnit *PathSU = MISUnitMap[MI]; AntiDepEdges(PathSU, Edges); // If MI is not on the critical path, then we don't rename // registers in the CriticalPathSet. BitVector *ExcludeRegs = NULL; if (MI == CriticalPathMI) { CriticalPathSU = CriticalPathStep(CriticalPathSU); CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : 0; } else if (CriticalPathSet.any()) { ExcludeRegs = &CriticalPathSet; } // Ignore KILL instructions (they form a group in ScanInstruction // but don't cause any anti-dependence breaking themselves) if (!MI->isKill()) { // Attempt to break each anti-dependency... for (unsigned i = 0, e = Edges.size(); i != e; ++i) { const SDep *Edge = Edges[i]; SUnit *NextSU = Edge->getSUnit(); if ((Edge->getKind() != SDep::Anti) && (Edge->getKind() != SDep::Output)) continue; unsigned AntiDepReg = Edge->getReg(); DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg)); assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); if (!MRI.isAllocatable(AntiDepReg)) { // Don't break anti-dependencies on non-allocatable registers. DEBUG(dbgs() << " (non-allocatable)\n"); continue; } else if ((ExcludeRegs != NULL) && ExcludeRegs->test(AntiDepReg)) { // Don't break anti-dependencies for critical path registers // if not on the critical path DEBUG(dbgs() << " (not critical-path)\n"); continue; } else if (PassthruRegs.count(AntiDepReg) != 0) { // If the anti-dep register liveness "passes-thru", then // don't try to change it. It will be changed along with // the use if required to break an earlier antidep. DEBUG(dbgs() << " (passthru)\n"); continue; } else { // No anti-dep breaking for implicit deps MachineOperand *AntiDepOp = MI->findRegisterDefOperand(AntiDepReg); assert(AntiDepOp != NULL && "Can't find index for defined register operand"); if ((AntiDepOp == NULL) || AntiDepOp->isImplicit()) { DEBUG(dbgs() << " (implicit)\n"); continue; } // If the SUnit has other dependencies on the SUnit that // it anti-depends on, don't bother breaking the // anti-dependency since those edges would prevent such // units from being scheduled past each other // regardless. // // Also, if there are dependencies on other SUnits with the // same register as the anti-dependency, don't attempt to // break it. for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), PE = PathSU->Preds.end(); P != PE; ++P) { if (P->getSUnit() == NextSU ? (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { AntiDepReg = 0; break; } } for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), PE = PathSU->Preds.end(); P != PE; ++P) { if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) && (P->getKind() != SDep::Output)) { DEBUG(dbgs() << " (real dependency)\n"); AntiDepReg = 0; break; } else if ((P->getSUnit() != NextSU) && (P->getKind() == SDep::Data) && (P->getReg() == AntiDepReg)) { DEBUG(dbgs() << " (other dependency)\n"); AntiDepReg = 0; break; } } if (AntiDepReg == 0) continue; } assert(AntiDepReg != 0); if (AntiDepReg == 0) continue; // Determine AntiDepReg's register group. const unsigned GroupIndex = State->GetGroup(AntiDepReg); if (GroupIndex == 0) { DEBUG(dbgs() << " (zero group)\n"); continue; } DEBUG(dbgs() << '\n'); // Look for a suitable register to use to break the anti-dependence. std::map RenameMap; if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { DEBUG(dbgs() << "\tBreaking anti-dependence edge on " << TRI->getName(AntiDepReg) << ":"); // Handle each group register... for (std::map::iterator S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) { unsigned CurrReg = S->first; unsigned NewReg = S->second; DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" << TRI->getName(NewReg) << "(" << RegRefs.count(CurrReg) << " refs)"); // Update the references to the old register CurrReg to // refer to the new register NewReg. std::pair::iterator, std::multimap::iterator> Range = RegRefs.equal_range(CurrReg); for (std::multimap::iterator Q = Range.first, QE = Range.second; Q != QE; ++Q) { Q->second.Operand->setReg(NewReg); // If the SU for the instruction being updated has debug // information related to the anti-dependency register, make // sure to update that as well. const SUnit *SU = MISUnitMap[Q->second.Operand->getParent()]; if (!SU) continue; for (DbgValueVector::iterator DVI = DbgValues.begin(), DVE = DbgValues.end(); DVI != DVE; ++DVI) if (DVI->second == Q->second.Operand->getParent()) UpdateDbgValue(DVI->first, AntiDepReg, NewReg); } // We just went back in time and modified history; the // liveness information for CurrReg is now inconsistent. Set // the state as if it were dead. State->UnionGroups(NewReg, 0); RegRefs.erase(NewReg); DefIndices[NewReg] = DefIndices[CurrReg]; KillIndices[NewReg] = KillIndices[CurrReg]; State->UnionGroups(CurrReg, 0); RegRefs.erase(CurrReg); DefIndices[CurrReg] = KillIndices[CurrReg]; KillIndices[CurrReg] = ~0u; assert(((KillIndices[CurrReg] == ~0u) != (DefIndices[CurrReg] == ~0u)) && "Kill and Def maps aren't consistent for AntiDepReg!"); } ++Broken; DEBUG(dbgs() << '\n'); } } } ScanInstruction(MI, Count); } return Broken; }