//=-- llvm/CodeGen/DwarfAccelTable.cpp - Dwarf Accelerator Tables -*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing dwarf accelerator tables. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Debug.h" #include "DwarfAccelTable.h" #include "DwarfDebug.h" #include "DIE.h" using namespace llvm; const char *DwarfAccelTable::Atom::AtomTypeString(enum AtomType AT) { switch (AT) { default: llvm_unreachable("invalid AtomType!"); case eAtomTypeNULL: return "eAtomTypeNULL"; case eAtomTypeDIEOffset: return "eAtomTypeDIEOffset"; case eAtomTypeCUOffset: return "eAtomTypeCUOffset"; case eAtomTypeTag: return "eAtomTypeTag"; case eAtomTypeNameFlags: return "eAtomTypeNameFlags"; case eAtomTypeTypeFlags: return "eAtomTypeTypeFlags"; } } // The general case would need to have a less hard coded size for the // length of the HeaderData, however, if we're constructing based on a // single Atom then we know it will always be: 4 + 4 + 2 + 2. DwarfAccelTable::DwarfAccelTable(DwarfAccelTable::Atom atom) : Header(12), HeaderData(atom) { } DwarfAccelTable::~DwarfAccelTable() { for (size_t i = 0, e = Data.size() ; i < e; ++i) delete Data[i]; } void DwarfAccelTable::AddName(StringRef Name, DIE* die) { // If the string is in the list already then add this die to the list // otherwise add a new one. DIEArray &DIEs = Entries[Name]; DIEs.push_back(die); } void DwarfAccelTable::ComputeBucketCount(void) { // First get the number of unique hashes. std::vector uniques; uniques.resize(Data.size()); for (size_t i = 0, e = Data.size(); i < e; ++i) uniques[i] = Data[i]->HashValue; std::sort(uniques.begin(), uniques.end()); std::vector::iterator p = std::unique(uniques.begin(), uniques.end()); uint32_t num = std::distance(uniques.begin(), p); // Then compute the bucket size, minimum of 1 bucket. if (num > 1024) Header.bucket_count = num/4; if (num > 16) Header.bucket_count = num/2; else Header.bucket_count = num > 0 ? num : 1; Header.hashes_count = num; } void DwarfAccelTable::FinalizeTable(AsmPrinter *Asm, const char *Prefix) { // Create the individual hash data outputs. for (StringMap::iterator EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { struct HashData *Entry = new HashData((*EI).getKeyData()); // Unique the entries. std::sort((*EI).second.begin(), (*EI).second.end()); (*EI).second.erase(std::unique((*EI).second.begin(), (*EI).second.end()), (*EI).second.end()); for (DIEArray::const_iterator DI = (*EI).second.begin(), DE = (*EI).second.end(); DI != DE; ++DI) Entry->addOffset((*DI)->getOffset()); Data.push_back(Entry); } // Figure out how many buckets we need, then compute the bucket // contents and the final ordering. We'll emit the hashes and offsets // by doing a walk during the emission phase. We add temporary // symbols to the data so that we can reference them during the offset // later, we'll emit them when we emit the data. ComputeBucketCount(); // Compute bucket contents and final ordering. Buckets.resize(Header.bucket_count); for (size_t i = 0, e = Data.size(); i < e; ++i) { uint32_t bucket = Data[i]->HashValue % Header.bucket_count; Buckets[bucket].push_back(Data[i]); Data[i]->Sym = Asm->GetTempSymbol(Prefix, i); } } // Emits the header for the table via the AsmPrinter. void DwarfAccelTable::EmitHeader(AsmPrinter *Asm) { Asm->OutStreamer.AddComment("Header Magic"); Asm->EmitInt32(Header.magic); Asm->OutStreamer.AddComment("Header Version"); Asm->EmitInt16(Header.version); Asm->OutStreamer.AddComment("Header Hash Function"); Asm->EmitInt16(Header.hash_function); Asm->OutStreamer.AddComment("Header Bucket Count"); Asm->EmitInt32(Header.bucket_count); Asm->OutStreamer.AddComment("Header Hash Count"); Asm->EmitInt32(Header.hashes_count); Asm->OutStreamer.AddComment("Header Data Length"); Asm->EmitInt32(Header.header_data_len); Asm->OutStreamer.AddComment("HeaderData Die Offset Base"); Asm->EmitInt32(HeaderData.die_offset_base); Asm->OutStreamer.AddComment("HeaderData Atom Count"); Asm->EmitInt32(HeaderData.Atoms.size()); for (size_t i = 0; i < HeaderData.Atoms.size(); i++) { Atom A = HeaderData.Atoms[i]; Asm->OutStreamer.AddComment(Atom::AtomTypeString(A.type)); Asm->EmitInt16(A.type); Asm->OutStreamer.AddComment(dwarf::FormEncodingString(A.form)); Asm->EmitInt16(A.form); } } // Walk through and emit the buckets for the table. This will look // like a list of numbers of how many elements are in each bucket. void DwarfAccelTable::EmitBuckets(AsmPrinter *Asm) { unsigned index = 0; for (size_t i = 0, e = Buckets.size(); i < e; ++i) { Asm->OutStreamer.AddComment("Bucket " + Twine(i)); if (Buckets[i].size() != 0) Asm->EmitInt32(index); else Asm->EmitInt32(UINT32_MAX); index += Buckets[i].size(); } } // Walk through the buckets and emit the individual hashes for each // bucket. void DwarfAccelTable::EmitHashes(AsmPrinter *Asm) { for (size_t i = 0, e = Buckets.size(); i < e; ++i) { for (HashList::const_iterator HI = Buckets[i].begin(), HE = Buckets[i].end(); HI != HE; ++HI) { Asm->OutStreamer.AddComment("Hash in Bucket " + Twine(i)); Asm->EmitInt32((*HI)->HashValue); } } } // Walk through the buckets and emit the individual offsets for each // element in each bucket. This is done via a symbol subtraction from the // beginning of the section. The non-section symbol will be output later // when we emit the actual data. void DwarfAccelTable::EmitOffsets(AsmPrinter *Asm, MCSymbol *SecBegin) { for (size_t i = 0, e = Buckets.size(); i < e; ++i) { for (HashList::const_iterator HI = Buckets[i].begin(), HE = Buckets[i].end(); HI != HE; ++HI) { Asm->OutStreamer.AddComment("Offset in Bucket " + Twine(i)); MCContext &Context = Asm->OutStreamer.getContext(); const MCExpr *Sub = MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create((*HI)->Sym, Context), MCSymbolRefExpr::Create(SecBegin, Context), Context); Asm->OutStreamer.EmitValue(Sub, sizeof(uint32_t), 0); } } } // Walk through the buckets and emit the full data for each element in // the bucket. For the string case emit the dies and the various offsets. // Terminate each HashData bucket with 0. void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfDebug *D) { uint64_t PrevHash = UINT64_MAX; for (size_t i = 0, e = Buckets.size(); i < e; ++i) { for (HashList::const_iterator HI = Buckets[i].begin(), HE = Buckets[i].end(); HI != HE; ++HI) { // Remember to emit the label for our offset. Asm->OutStreamer.EmitLabel((*HI)->Sym); Asm->OutStreamer.AddComment((*HI)->Str); Asm->EmitSectionOffset(D->getStringPoolEntry((*HI)->Str), D->getStringPool()); Asm->OutStreamer.AddComment("Num DIEs"); Asm->EmitInt32((*HI)->DIEOffsets.size()); for (std::vector::const_iterator DI = (*HI)->DIEOffsets.begin(), DE = (*HI)->DIEOffsets.end(); DI != DE; ++DI) { Asm->EmitInt32((*DI)); } // Emit a 0 to terminate the data unless we have a hash collision. if (PrevHash != (*HI)->HashValue) Asm->EmitInt32(0); PrevHash = (*HI)->HashValue; } } } // Emit the entire data structure to the output file. void DwarfAccelTable::Emit(AsmPrinter *Asm, MCSymbol *SecBegin, DwarfDebug *D) { // Emit the header. EmitHeader(Asm); // Emit the buckets. EmitBuckets(Asm); // Emit the hashes. EmitHashes(Asm); // Emit the offsets. EmitOffsets(Asm, SecBegin); // Emit the hash data. EmitData(Asm, D); } #ifndef NDEBUG void DwarfAccelTable::print(raw_ostream &O) { Header.print(O); HeaderData.print(O); O << "Entries: \n"; for (StringMap::const_iterator EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { O << "Name: " << (*EI).getKeyData() << "\n"; for (DIEArray::const_iterator DI = (*EI).second.begin(), DE = (*EI).second.end(); DI != DE; ++DI) (*DI)->print(O); } O << "Buckets and Hashes: \n"; for (size_t i = 0, e = Buckets.size(); i < e; ++i) for (HashList::const_iterator HI = Buckets[i].begin(), HE = Buckets[i].end(); HI != HE; ++HI) (*HI)->print(O); O << "Data: \n"; for (std::vector::const_iterator DI = Data.begin(), DE = Data.end(); DI != DE; ++DI) (*DI)->print(O); } #endif