//==-- llvm/CodeGen/DwarfAccelTable.h - Dwarf Accelerator Tables -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing dwarf accelerator tables. // //===----------------------------------------------------------------------===// #ifndef CODEGEN_ASMPRINTER_DWARFACCELTABLE_H__ #define CODEGEN_ASMPRINTER_DWARFACCELTABLE_H__ #include "DIE.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringMap.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormattedStream.h" #include #include // The dwarf accelerator tables are an indirect hash table optimized // for null lookup rather than access to known data. They are output into // an on-disk format that looks like this: // // .-------------. // | HEADER | // |-------------| // | BUCKETS | // |-------------| // | HASHES | // |-------------| // | OFFSETS | // |-------------| // | DATA | // `-------------' // // where the header contains a magic number, version, type of hash function, // the number of buckets, total number of hashes, and room for a special // struct of data and the length of that struct. // // The buckets contain an index (e.g. 6) into the hashes array. The hashes // section contains all of the 32-bit hash values in contiguous memory, and // the offsets contain the offset into the data area for the particular // hash. // // For a lookup example, we could hash a function name and take it modulo the // number of buckets giving us our bucket. From there we take the bucket value // as an index into the hashes table and look at each successive hash as long // as the hash value is still the same modulo result (bucket value) as earlier. // If we have a match we look at that same entry in the offsets table and // grab the offset in the data for our final match. namespace llvm { class AsmPrinter; class DIE; class DwarfUnits; class DwarfAccelTable { enum HashFunctionType { eHashFunctionDJB = 0u }; static uint32_t HashDJB (StringRef Str) { uint32_t h = 5381; for (unsigned i = 0, e = Str.size(); i != e; ++i) h = ((h << 5) + h) + Str[i]; return h; } // Helper function to compute the number of buckets needed based on // the number of unique hashes. void ComputeBucketCount (void); struct TableHeader { uint32_t magic; // 'HASH' magic value to allow endian detection uint16_t version; // Version number. uint16_t hash_function; // The hash function enumeration that was used. uint32_t bucket_count; // The number of buckets in this hash table. uint32_t hashes_count; // The total number of unique hash values // and hash data offsets in this table. uint32_t header_data_len; // The bytes to skip to get to the hash // indexes (buckets) for correct alignment. // Also written to disk is the implementation specific header data. static const uint32_t MagicHash = 0x48415348; TableHeader (uint32_t data_len) : magic (MagicHash), version (1), hash_function (eHashFunctionDJB), bucket_count (0), hashes_count (0), header_data_len (data_len) {} #ifndef NDEBUG void print(raw_ostream &O) { O << "Magic: " << format("0x%x", magic) << "\n" << "Version: " << version << "\n" << "Hash Function: " << hash_function << "\n" << "Bucket Count: " << bucket_count << "\n" << "Header Data Length: " << header_data_len << "\n"; } void dump() { print(dbgs()); } #endif }; public: // The HeaderData describes the form of each set of data. In general this // is as a list of atoms (atom_count) where each atom contains a type // (AtomType type) of data, and an encoding form (form). In the case of // data that is referenced via DW_FORM_ref_* the die_offset_base is // used to describe the offset for all forms in the list of atoms. // This also serves as a public interface of sorts. // When written to disk this will have the form: // // uint32_t die_offset_base // uint32_t atom_count // atom_count Atoms enum AtomType { eAtomTypeNULL = 0u, eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that // contains the item in question eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as // DW_FORM_data1 (if no tags exceed 255) or // DW_FORM_data2. eAtomTypeNameFlags = 4u, // Flags from enum NameFlags eAtomTypeTypeFlags = 5u // Flags from enum TypeFlags }; enum TypeFlags { eTypeFlagClassMask = 0x0000000fu, // Always set for C++, only set for ObjC if this is the // @implementation for a class. eTypeFlagClassIsImplementation = ( 1u << 1 ) }; // Make these public so that they can be used as a general interface to // the class. struct Atom { AtomType type; // enum AtomType uint16_t form; // DWARF DW_FORM_ defines Atom(AtomType type, uint16_t form) : type(type), form(form) {} static const char * AtomTypeString(enum AtomType); #ifndef NDEBUG void print(raw_ostream &O) { O << "Type: " << AtomTypeString(type) << "\n" << "Form: " << dwarf::FormEncodingString(form) << "\n"; } void dump() { print(dbgs()); } #endif }; private: struct TableHeaderData { uint32_t die_offset_base; SmallVector Atoms; TableHeaderData(ArrayRef AtomList, uint32_t offset = 0) : die_offset_base(offset), Atoms(AtomList.begin(), AtomList.end()) { } #ifndef NDEBUG void print (raw_ostream &O) { O << "die_offset_base: " << die_offset_base << "\n"; for (size_t i = 0; i < Atoms.size(); i++) Atoms[i].print(O); } void dump() { print(dbgs()); } #endif }; // The data itself consists of a str_offset, a count of the DIEs in the // hash and the offsets to the DIEs themselves. // On disk each data section is ended with a 0 KeyType as the end of the // hash chain. // On output this looks like: // uint32_t str_offset // uint32_t hash_data_count // HashData[hash_data_count] public: struct HashDataContents { DIE *Die; // Offsets char Flags; // Specific flags to output HashDataContents(DIE *D, char Flags) : Die(D), Flags(Flags) { } #ifndef NDEBUG void print(raw_ostream &O) const { O << " Offset: " << Die->getOffset() << "\n"; O << " Tag: " << dwarf::TagString(Die->getTag()) << "\n"; O << " Flags: " << Flags << "\n"; } #endif }; private: struct HashData { StringRef Str; uint32_t HashValue; MCSymbol *Sym; ArrayRef Data; // offsets HashData(StringRef S, ArrayRef Data) : Str(S), Data(Data) { HashValue = DwarfAccelTable::HashDJB(S); } #ifndef NDEBUG void print(raw_ostream &O) { O << "Name: " << Str << "\n"; O << " Hash Value: " << format("0x%x", HashValue) << "\n"; O << " Symbol: " ; if (Sym) Sym->print(O); else O << ""; O << "\n"; for (size_t i = 0; i < Data.size(); i++) { O << " Offset: " << Data[i]->Die->getOffset() << "\n"; O << " Tag: " << dwarf::TagString(Data[i]->Die->getTag()) << "\n"; O << " Flags: " << Data[i]->Flags << "\n"; } } void dump() { print(dbgs()); } #endif }; DwarfAccelTable(const DwarfAccelTable&) LLVM_DELETED_FUNCTION; void operator=(const DwarfAccelTable&) LLVM_DELETED_FUNCTION; // Internal Functions void EmitHeader(AsmPrinter *); void EmitBuckets(AsmPrinter *); void EmitHashes(AsmPrinter *); void EmitOffsets(AsmPrinter *, MCSymbol *); void EmitData(AsmPrinter *, DwarfUnits *D); // Allocator for HashData and HashDataContents. BumpPtrAllocator Allocator; // Output Variables TableHeader Header; TableHeaderData HeaderData; std::vector Data; // String Data typedef std::vector DataArray; typedef StringMap StringEntries; StringEntries Entries; // Buckets/Hashes/Offsets typedef std::vector HashList; typedef std::vector BucketList; BucketList Buckets; HashList Hashes; // Public Implementation public: DwarfAccelTable(ArrayRef); ~DwarfAccelTable(); void AddName(StringRef, DIE*, char = 0); void FinalizeTable(AsmPrinter *, const char *); void Emit(AsmPrinter *, MCSymbol *, DwarfUnits *); #ifndef NDEBUG void print(raw_ostream &O); void dump() { print(dbgs()); } #endif }; } #endif