//===-- AtomicExpandLoadLinkedPass.cpp - Expand atomic instructions -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass (at IR level) to replace atomic instructions with // appropriate (intrinsic-based) ldrex/strex loops. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "arm-atomic-expand" namespace { class AtomicExpandLoadLinked : public FunctionPass { const TargetMachine *TM; public: static char ID; // Pass identification, replacement for typeid explicit AtomicExpandLoadLinked(const TargetMachine *TM = nullptr) : FunctionPass(ID), TM(TM) { initializeAtomicExpandLoadLinkedPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; bool expandAtomicInsts(Function &F); bool expandAtomicLoad(LoadInst *LI); bool expandAtomicStore(StoreInst *LI); bool expandAtomicRMW(AtomicRMWInst *AI); bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); AtomicOrdering insertLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord); void insertTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord); }; } char AtomicExpandLoadLinked::ID = 0; char &llvm::AtomicExpandLoadLinkedID = AtomicExpandLoadLinked::ID; INITIALIZE_TM_PASS(AtomicExpandLoadLinked, "atomic-ll-sc", "Expand Atomic calls in terms of load-linked & store-conditional", false, false) FunctionPass *llvm::createAtomicExpandLoadLinkedPass(const TargetMachine *TM) { return new AtomicExpandLoadLinked(TM); } bool AtomicExpandLoadLinked::runOnFunction(Function &F) { if (!TM || !TM->getSubtargetImpl()->enableAtomicExpandLoadLinked()) return false; SmallVector AtomicInsts; // Changing control-flow while iterating through it is a bad idea, so gather a // list of all atomic instructions before we start. for (BasicBlock &BB : F) for (Instruction &Inst : BB) { if (isa(&Inst) || isa(&Inst) || (isa(&Inst) && cast(&Inst)->isAtomic()) || (isa(&Inst) && cast(&Inst)->isAtomic())) AtomicInsts.push_back(&Inst); } bool MadeChange = false; for (Instruction *Inst : AtomicInsts) { if (!TM->getTargetLowering()->shouldExpandAtomicInIR(Inst)) continue; if (AtomicRMWInst *AI = dyn_cast(Inst)) MadeChange |= expandAtomicRMW(AI); else if (AtomicCmpXchgInst *CI = dyn_cast(Inst)) MadeChange |= expandAtomicCmpXchg(CI); else if (LoadInst *LI = dyn_cast(Inst)) MadeChange |= expandAtomicLoad(LI); else if (StoreInst *SI = dyn_cast(Inst)) MadeChange |= expandAtomicStore(SI); else llvm_unreachable("Unknown atomic instruction"); } return MadeChange; } bool AtomicExpandLoadLinked::expandAtomicLoad(LoadInst *LI) { // Load instructions don't actually need a leading fence, even in the // SequentiallyConsistent case. AtomicOrdering MemOpOrder = TM->getTargetLowering()->getInsertFencesForAtomic() ? Monotonic : LI->getOrdering(); // The only 64-bit load guaranteed to be single-copy atomic by the ARM ARM is // an ldrexd (A3.5.3). IRBuilder<> Builder(LI); Value *Val = TM->getTargetLowering()->emitLoadLinked( Builder, LI->getPointerOperand(), MemOpOrder); insertTrailingFence(Builder, LI->getOrdering()); LI->replaceAllUsesWith(Val); LI->eraseFromParent(); return true; } bool AtomicExpandLoadLinked::expandAtomicStore(StoreInst *SI) { // The only atomic 64-bit store on ARM is an strexd that succeeds, which means // we need a loop and the entire instruction is essentially an "atomicrmw // xchg" that ignores the value loaded. IRBuilder<> Builder(SI); AtomicRMWInst *AI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), SI->getOrdering()); SI->eraseFromParent(); // Now we have an appropriate swap instruction, lower it as usual. return expandAtomicRMW(AI); } bool AtomicExpandLoadLinked::expandAtomicRMW(AtomicRMWInst *AI) { AtomicOrdering Order = AI->getOrdering(); Value *Addr = AI->getPointerOperand(); BasicBlock *BB = AI->getParent(); Function *F = BB->getParent(); LLVMContext &Ctx = F->getContext(); // Given: atomicrmw some_op iN* %addr, iN %incr ordering // // The standard expansion we produce is: // [...] // fence? // atomicrmw.start: // %loaded = @load.linked(%addr) // %new = some_op iN %loaded, %incr // %stored = @store_conditional(%new, %addr) // %try_again = icmp i32 ne %stored, 0 // br i1 %try_again, label %loop, label %atomicrmw.end // atomicrmw.end: // fence? // [...] BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); // This grabs the DebugLoc from AI. IRBuilder<> Builder(AI); // The split call above "helpfully" added a branch at the end of BB (to the // wrong place), but we might want a fence too. It's easiest to just remove // the branch entirely. std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); AtomicOrdering MemOpOrder = insertLeadingFence(Builder, Order); Builder.CreateBr(LoopBB); // Start the main loop block now that we've taken care of the preliminaries. Builder.SetInsertPoint(LoopBB); Value *Loaded = TM->getTargetLowering()->emitLoadLinked(Builder, Addr, MemOpOrder); Value *NewVal; switch (AI->getOperation()) { case AtomicRMWInst::Xchg: NewVal = AI->getValOperand(); break; case AtomicRMWInst::Add: NewVal = Builder.CreateAdd(Loaded, AI->getValOperand(), "new"); break; case AtomicRMWInst::Sub: NewVal = Builder.CreateSub(Loaded, AI->getValOperand(), "new"); break; case AtomicRMWInst::And: NewVal = Builder.CreateAnd(Loaded, AI->getValOperand(), "new"); break; case AtomicRMWInst::Nand: NewVal = Builder.CreateAnd(Loaded, Builder.CreateNot(AI->getValOperand()), "new"); break; case AtomicRMWInst::Or: NewVal = Builder.CreateOr(Loaded, AI->getValOperand(), "new"); break; case AtomicRMWInst::Xor: NewVal = Builder.CreateXor(Loaded, AI->getValOperand(), "new"); break; case AtomicRMWInst::Max: NewVal = Builder.CreateICmpSGT(Loaded, AI->getValOperand()); NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); break; case AtomicRMWInst::Min: NewVal = Builder.CreateICmpSLE(Loaded, AI->getValOperand()); NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); break; case AtomicRMWInst::UMax: NewVal = Builder.CreateICmpUGT(Loaded, AI->getValOperand()); NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); break; case AtomicRMWInst::UMin: NewVal = Builder.CreateICmpULE(Loaded, AI->getValOperand()); NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new"); break; default: llvm_unreachable("Unknown atomic op"); } Value *StoreSuccess = TM->getTargetLowering()->emitStoreConditional( Builder, NewVal, Addr, MemOpOrder); Value *TryAgain = Builder.CreateICmpNE( StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); Builder.SetInsertPoint(ExitBB, ExitBB->begin()); insertTrailingFence(Builder, Order); AI->replaceAllUsesWith(Loaded); AI->eraseFromParent(); return true; } bool AtomicExpandLoadLinked::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); AtomicOrdering FailureOrder = CI->getFailureOrdering(); Value *Addr = CI->getPointerOperand(); BasicBlock *BB = CI->getParent(); Function *F = BB->getParent(); LLVMContext &Ctx = F->getContext(); // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord // // The full expansion we produce is: // [...] // fence? // cmpxchg.start: // %loaded = @load.linked(%addr) // %should_store = icmp eq %loaded, %desired // br i1 %should_store, label %cmpxchg.trystore, // label %cmpxchg.failure // cmpxchg.trystore: // %stored = @store_conditional(%new, %addr) // %success = icmp eq i32 %stored, 0 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure // cmpxchg.success: // fence? // br label %cmpxchg.end // cmpxchg.failure: // fence? // br label %cmpxchg.end // cmpxchg.end: // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 // [...] BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB); auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); // This grabs the DebugLoc from CI IRBuilder<> Builder(CI); // The split call above "helpfully" added a branch at the end of BB (to the // wrong place), but we might want a fence too. It's easiest to just remove // the branch entirely. std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); AtomicOrdering MemOpOrder = insertLeadingFence(Builder, SuccessOrder); Builder.CreateBr(LoopBB); // Start the main loop block now that we've taken care of the preliminaries. Builder.SetInsertPoint(LoopBB); Value *Loaded = TM->getTargetLowering()->emitLoadLinked(Builder, Addr, MemOpOrder); Value *ShouldStore = Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); // If the the cmpxchg doesn't actually need any ordering when it fails, we can // jump straight past that fence instruction (if it exists). Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); Builder.SetInsertPoint(TryStoreBB); Value *StoreSuccess = TM->getTargetLowering()->emitStoreConditional( Builder, CI->getNewValOperand(), Addr, MemOpOrder); StoreSuccess = Builder.CreateICmpEQ( StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); Builder.CreateCondBr(StoreSuccess, SuccessBB, CI->isWeak() ? FailureBB : LoopBB); // Make sure later instructions don't get reordered with a fence if necessary. Builder.SetInsertPoint(SuccessBB); insertTrailingFence(Builder, SuccessOrder); Builder.CreateBr(ExitBB); Builder.SetInsertPoint(FailureBB); insertTrailingFence(Builder, FailureOrder); Builder.CreateBr(ExitBB); // Finally, we have control-flow based knowledge of whether the cmpxchg // succeeded or not. We expose this to later passes by converting any // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. // Setup the builder so we can create any PHIs we need. Builder.SetInsertPoint(ExitBB, ExitBB->begin()); PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); // Look for any users of the cmpxchg that are just comparing the loaded value // against the desired one, and replace them with the CFG-derived version. SmallVector PrunedInsts; for (auto User : CI->users()) { ExtractValueInst *EV = dyn_cast(User); if (!EV) continue; assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && "weird extraction from { iN, i1 }"); if (EV->getIndices()[0] == 0) EV->replaceAllUsesWith(Loaded); else EV->replaceAllUsesWith(Success); PrunedInsts.push_back(EV); } // We can remove the instructions now we're no longer iterating through them. for (auto EV : PrunedInsts) EV->eraseFromParent(); if (!CI->use_empty()) { // Some use of the full struct return that we don't understand has happened, // so we've got to reconstruct it properly. Value *Res; Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); Res = Builder.CreateInsertValue(Res, Success, 1); CI->replaceAllUsesWith(Res); } CI->eraseFromParent(); return true; } AtomicOrdering AtomicExpandLoadLinked::insertLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord) { if (!TM->getTargetLowering()->getInsertFencesForAtomic()) return Ord; if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent) Builder.CreateFence(Release); // The exclusive operations don't need any barrier if we're adding separate // fences. return Monotonic; } void AtomicExpandLoadLinked::insertTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord) { if (!TM->getTargetLowering()->getInsertFencesForAtomic()) return; if (Ord == Acquire || Ord == AcquireRelease) Builder.CreateFence(Acquire); else if (Ord == SequentiallyConsistent) Builder.CreateFence(SequentiallyConsistent); }