//===-- DwarfEHPrepare - Prepare exception handling for code generation ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass mulches exception handling code into a form adapted to code // generation. Required if using dwarf exception handling. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dwarfehprepare" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/CodeGen/Passes.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/CallSite.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; STATISTIC(NumLandingPadsSplit, "Number of landing pads split"); STATISTIC(NumUnwindsLowered, "Number of unwind instructions lowered"); STATISTIC(NumResumesLowered, "Number of eh.resume calls lowered"); STATISTIC(NumExceptionValuesMoved, "Number of eh.exception calls moved"); namespace { class DwarfEHPrepare : public FunctionPass { const TargetMachine *TM; const TargetLowering *TLI; // The eh.exception intrinsic. Function *ExceptionValueIntrinsic; // The eh.selector intrinsic. Function *SelectorIntrinsic; // _Unwind_Resume_or_Rethrow or _Unwind_SjLj_Resume call. Constant *URoR; // The EH language-specific catch-all type. GlobalVariable *EHCatchAllValue; // _Unwind_Resume or the target equivalent. Constant *RewindFunction; // We both use and preserve dominator info. DominatorTree *DT; // The function we are running on. Function *F; // The landing pads for this function. typedef SmallPtrSet BBSet; BBSet LandingPads; bool InsertUnwindResumeCalls(); bool NormalizeLandingPads(); bool LowerUnwindsAndResumes(); bool MoveExceptionValueCalls(); Instruction *CreateExceptionValueCall(BasicBlock *BB); /// CleanupSelectors - Any remaining eh.selector intrinsic calls which still /// use the "llvm.eh.catch.all.value" call need to convert to using its /// initializer instead. bool CleanupSelectors(SmallPtrSet &Sels); bool HasCatchAllInSelector(IntrinsicInst *); /// FindAllCleanupSelectors - Find all eh.selector calls that are clean-ups. void FindAllCleanupSelectors(SmallPtrSet &Sels, SmallPtrSet &CatchAllSels); /// FindAllURoRInvokes - Find all URoR invokes in the function. void FindAllURoRInvokes(SmallPtrSet &URoRInvokes); /// HandleURoRInvokes - Handle invokes of "_Unwind_Resume_or_Rethrow" or /// "_Unwind_SjLj_Resume" calls. The "unwind" part of these invokes jump to /// a landing pad within the current function. This is a candidate to merge /// the selector associated with the URoR invoke with the one from the /// URoR's landing pad. bool HandleURoRInvokes(); /// FindSelectorAndURoR - Find the eh.selector call and URoR call associated /// with the eh.exception call. This recursively looks past instructions /// which don't change the EH pointer value, like casts or PHI nodes. bool FindSelectorAndURoR(Instruction *Inst, bool &URoRInvoke, SmallPtrSet &SelCalls, SmallPtrSet &SeenPHIs); public: static char ID; // Pass identification, replacement for typeid. DwarfEHPrepare(const TargetMachine *tm) : FunctionPass(ID), TM(tm), TLI(TM->getTargetLowering()), ExceptionValueIntrinsic(0), SelectorIntrinsic(0), URoR(0), EHCatchAllValue(0), RewindFunction(0) { initializeDominatorTreePass(*PassRegistry::getPassRegistry()); } virtual bool runOnFunction(Function &Fn); // getAnalysisUsage - We need the dominator tree for handling URoR. virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); } const char *getPassName() const { return "Exception handling preparation"; } }; } // end anonymous namespace char DwarfEHPrepare::ID = 0; FunctionPass *llvm::createDwarfEHPass(const TargetMachine *tm) { return new DwarfEHPrepare(tm); } /// HasCatchAllInSelector - Return true if the intrinsic instruction has a /// catch-all. bool DwarfEHPrepare::HasCatchAllInSelector(IntrinsicInst *II) { if (!EHCatchAllValue) return false; unsigned ArgIdx = II->getNumArgOperands() - 1; GlobalVariable *GV = dyn_cast(II->getArgOperand(ArgIdx)); return GV == EHCatchAllValue; } /// FindAllCleanupSelectors - Find all eh.selector calls that are clean-ups. void DwarfEHPrepare:: FindAllCleanupSelectors(SmallPtrSet &Sels, SmallPtrSet &CatchAllSels) { for (Value::use_iterator I = SelectorIntrinsic->use_begin(), E = SelectorIntrinsic->use_end(); I != E; ++I) { IntrinsicInst *II = cast(*I); if (II->getParent()->getParent() != F) continue; if (!HasCatchAllInSelector(II)) Sels.insert(II); else CatchAllSels.insert(II); } } /// FindAllURoRInvokes - Find all URoR invokes in the function. void DwarfEHPrepare:: FindAllURoRInvokes(SmallPtrSet &URoRInvokes) { for (Value::use_iterator I = URoR->use_begin(), E = URoR->use_end(); I != E; ++I) { if (InvokeInst *II = dyn_cast(*I)) URoRInvokes.insert(II); } } /// CleanupSelectors - Any remaining eh.selector intrinsic calls which still use /// the "llvm.eh.catch.all.value" call need to convert to using its /// initializer instead. bool DwarfEHPrepare::CleanupSelectors(SmallPtrSet &Sels) { if (!EHCatchAllValue) return false; if (!SelectorIntrinsic) { SelectorIntrinsic = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_selector); if (!SelectorIntrinsic) return false; } bool Changed = false; for (SmallPtrSet::iterator I = Sels.begin(), E = Sels.end(); I != E; ++I) { IntrinsicInst *Sel = *I; // Index of the "llvm.eh.catch.all.value" variable. unsigned OpIdx = Sel->getNumArgOperands() - 1; GlobalVariable *GV = dyn_cast(Sel->getArgOperand(OpIdx)); if (GV != EHCatchAllValue) continue; Sel->setArgOperand(OpIdx, EHCatchAllValue->getInitializer()); Changed = true; } return Changed; } /// FindSelectorAndURoR - Find the eh.selector call associated with the /// eh.exception call. And indicate if there is a URoR "invoke" associated with /// the eh.exception call. This recursively looks past instructions which don't /// change the EH pointer value, like casts or PHI nodes. bool DwarfEHPrepare::FindSelectorAndURoR(Instruction *Inst, bool &URoRInvoke, SmallPtrSet &SelCalls, SmallPtrSet &SeenPHIs) { bool Changed = false; for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); I != E; ++I) { Instruction *II = dyn_cast(*I); if (!II || II->getParent()->getParent() != F) continue; if (IntrinsicInst *Sel = dyn_cast(II)) { if (Sel->getIntrinsicID() == Intrinsic::eh_selector) SelCalls.insert(Sel); } else if (InvokeInst *Invoke = dyn_cast(II)) { if (Invoke->getCalledFunction() == URoR) URoRInvoke = true; } else if (CastInst *CI = dyn_cast(II)) { Changed |= FindSelectorAndURoR(CI, URoRInvoke, SelCalls, SeenPHIs); } else if (PHINode *PN = dyn_cast(II)) { if (SeenPHIs.insert(PN)) // Don't process a PHI node more than once. Changed |= FindSelectorAndURoR(PN, URoRInvoke, SelCalls, SeenPHIs); } } return Changed; } /// HandleURoRInvokes - Handle invokes of "_Unwind_Resume_or_Rethrow" or /// "_Unwind_SjLj_Resume" calls. The "unwind" part of these invokes jump to a /// landing pad within the current function. This is a candidate to merge the /// selector associated with the URoR invoke with the one from the URoR's /// landing pad. bool DwarfEHPrepare::HandleURoRInvokes() { if (!EHCatchAllValue) { EHCatchAllValue = F->getParent()->getNamedGlobal("llvm.eh.catch.all.value"); if (!EHCatchAllValue) return false; } if (!SelectorIntrinsic) { SelectorIntrinsic = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_selector); if (!SelectorIntrinsic) return false; } SmallPtrSet Sels; SmallPtrSet CatchAllSels; FindAllCleanupSelectors(Sels, CatchAllSels); if (!URoR) { URoR = F->getParent()->getFunction("_Unwind_Resume_or_Rethrow"); if (!URoR) return CleanupSelectors(CatchAllSels); } SmallPtrSet URoRInvokes; FindAllURoRInvokes(URoRInvokes); SmallPtrSet SelsToConvert; for (SmallPtrSet::iterator SI = Sels.begin(), SE = Sels.end(); SI != SE; ++SI) { const BasicBlock *SelBB = (*SI)->getParent(); for (SmallPtrSet::iterator UI = URoRInvokes.begin(), UE = URoRInvokes.end(); UI != UE; ++UI) { const BasicBlock *URoRBB = (*UI)->getParent(); if (DT->dominates(SelBB, URoRBB)) { SelsToConvert.insert(*SI); break; } } } bool Changed = false; if (Sels.size() != SelsToConvert.size()) { // If we haven't been able to convert all of the clean-up selectors, then // loop through the slow way to see if they still need to be converted. if (!ExceptionValueIntrinsic) { ExceptionValueIntrinsic = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_exception); if (!ExceptionValueIntrinsic) return CleanupSelectors(CatchAllSels); } for (Value::use_iterator I = ExceptionValueIntrinsic->use_begin(), E = ExceptionValueIntrinsic->use_end(); I != E; ++I) { IntrinsicInst *EHPtr = dyn_cast(*I); if (!EHPtr || EHPtr->getParent()->getParent() != F) continue; bool URoRInvoke = false; SmallPtrSet SelCalls; SmallPtrSet SeenPHIs; Changed |= FindSelectorAndURoR(EHPtr, URoRInvoke, SelCalls, SeenPHIs); if (URoRInvoke) { // This EH pointer is being used by an invoke of an URoR instruction and // an eh.selector intrinsic call. If the eh.selector is a 'clean-up', we // need to convert it to a 'catch-all'. for (SmallPtrSet::iterator SI = SelCalls.begin(), SE = SelCalls.end(); SI != SE; ++SI) if (!HasCatchAllInSelector(*SI)) SelsToConvert.insert(*SI); } } } if (!SelsToConvert.empty()) { // Convert all clean-up eh.selectors, which are associated with "invokes" of // URoR calls, into catch-all eh.selectors. Changed = true; for (SmallPtrSet::iterator SI = SelsToConvert.begin(), SE = SelsToConvert.end(); SI != SE; ++SI) { IntrinsicInst *II = *SI; // Use the exception object pointer and the personality function // from the original selector. CallSite CS(II); IntrinsicInst::op_iterator I = CS.arg_begin(); IntrinsicInst::op_iterator E = CS.arg_end(); IntrinsicInst::op_iterator B = prior(E); // Exclude last argument if it is an integer. if (isa(B)) E = B; // Add exception object pointer (front). // Add personality function (next). // Add in any filter IDs (rest). SmallVector Args(I, E); Args.push_back(EHCatchAllValue->getInitializer()); // Catch-all indicator. CallInst *NewSelector = CallInst::Create(SelectorIntrinsic, Args, "eh.sel.catch.all", II); NewSelector->setTailCall(II->isTailCall()); NewSelector->setAttributes(II->getAttributes()); NewSelector->setCallingConv(II->getCallingConv()); II->replaceAllUsesWith(NewSelector); II->eraseFromParent(); } } Changed |= CleanupSelectors(CatchAllSels); return Changed; } /// NormalizeLandingPads - Normalize and discover landing pads, noting them /// in the LandingPads set. A landing pad is normal if the only CFG edges /// that end at it are unwind edges from invoke instructions. If we inlined /// through an invoke we could have a normal branch from the previous /// unwind block through to the landing pad for the original invoke. /// Abnormal landing pads are fixed up by redirecting all unwind edges to /// a new basic block which falls through to the original. bool DwarfEHPrepare::NormalizeLandingPads() { bool Changed = false; const MCAsmInfo *MAI = TM->getMCAsmInfo(); bool usingSjLjEH = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { TerminatorInst *TI = I->getTerminator(); if (!isa(TI)) continue; BasicBlock *LPad = TI->getSuccessor(1); // Skip landing pads that have already been normalized. if (LandingPads.count(LPad)) continue; // Check that only invoke unwind edges end at the landing pad. bool OnlyUnwoundTo = true; bool SwitchOK = usingSjLjEH; for (pred_iterator PI = pred_begin(LPad), PE = pred_end(LPad); PI != PE; ++PI) { TerminatorInst *PT = (*PI)->getTerminator(); // The SjLj dispatch block uses a switch instruction. This is effectively // an unwind edge, so we can disregard it here. There will only ever // be one dispatch, however, so if there are multiple switches, one // of them truly is a normal edge, not an unwind edge. if (SwitchOK && isa(PT)) { SwitchOK = false; continue; } if (!isa(PT) || LPad == PT->getSuccessor(0)) { OnlyUnwoundTo = false; break; } } if (OnlyUnwoundTo) { // Only unwind edges lead to the landing pad. Remember the landing pad. LandingPads.insert(LPad); continue; } // At least one normal edge ends at the landing pad. Redirect the unwind // edges to a new basic block which falls through into this one. // Create the new basic block. BasicBlock *NewBB = BasicBlock::Create(F->getContext(), LPad->getName() + "_unwind_edge"); // Insert it into the function right before the original landing pad. LPad->getParent()->getBasicBlockList().insert(LPad, NewBB); // Redirect unwind edges from the original landing pad to NewBB. for (pred_iterator PI = pred_begin(LPad), PE = pred_end(LPad); PI != PE; ) { TerminatorInst *PT = (*PI++)->getTerminator(); if (isa(PT) && PT->getSuccessor(1) == LPad) // Unwind to the new block. PT->setSuccessor(1, NewBB); } // If there are any PHI nodes in LPad, we need to update them so that they // merge incoming values from NewBB instead. for (BasicBlock::iterator II = LPad->begin(); isa(II); ++II) { PHINode *PN = cast(II); pred_iterator PB = pred_begin(NewBB), PE = pred_end(NewBB); // Check to see if all of the values coming in via unwind edges are the // same. If so, we don't need to create a new PHI node. Value *InVal = PN->getIncomingValueForBlock(*PB); for (pred_iterator PI = PB; PI != PE; ++PI) { if (PI != PB && InVal != PN->getIncomingValueForBlock(*PI)) { InVal = 0; break; } } if (InVal == 0) { // Different unwind edges have different values. Create a new PHI node // in NewBB. PHINode *NewPN = PHINode::Create(PN->getType(), PN->getNumIncomingValues(), PN->getName()+".unwind", NewBB); // Add an entry for each unwind edge, using the value from the old PHI. for (pred_iterator PI = PB; PI != PE; ++PI) NewPN->addIncoming(PN->getIncomingValueForBlock(*PI), *PI); // Now use this new PHI as the common incoming value for NewBB in PN. InVal = NewPN; } // Revector exactly one entry in the PHI node to come from NewBB // and delete all other entries that come from unwind edges. If // there are both normal and unwind edges from the same predecessor, // this leaves an entry for the normal edge. for (pred_iterator PI = PB; PI != PE; ++PI) PN->removeIncomingValue(*PI); PN->addIncoming(InVal, NewBB); } // Add a fallthrough from NewBB to the original landing pad. BranchInst::Create(LPad, NewBB); // Now update DominatorTree analysis information. DT->splitBlock(NewBB); // Remember the newly constructed landing pad. The original landing pad // LPad is no longer a landing pad now that all unwind edges have been // revectored to NewBB. LandingPads.insert(NewBB); ++NumLandingPadsSplit; Changed = true; } return Changed; } /// LowerUnwinds - Turn unwind instructions into calls to _Unwind_Resume, /// rethrowing any previously caught exception. This will crash horribly /// at runtime if there is no such exception: using unwind to throw a new /// exception is currently not supported. bool DwarfEHPrepare::LowerUnwindsAndResumes() { SmallVector ResumeInsts; for (Function::iterator fi = F->begin(), fe = F->end(); fi != fe; ++fi) { for (BasicBlock::iterator bi = fi->begin(), be = fi->end(); bi != be; ++bi){ if (isa(bi)) ResumeInsts.push_back(bi); else if (CallInst *call = dyn_cast(bi)) if (Function *fn = dyn_cast(call->getCalledValue())) if (fn->getName() == "llvm.eh.resume") ResumeInsts.push_back(bi); } } if (ResumeInsts.empty()) return false; // Find the rewind function if we didn't already. if (!RewindFunction) { LLVMContext &Ctx = ResumeInsts[0]->getContext(); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), Type::getInt8PtrTy(Ctx), false); const char *RewindName = TLI->getLibcallName(RTLIB::UNWIND_RESUME); RewindFunction = F->getParent()->getOrInsertFunction(RewindName, FTy); } bool Changed = false; for (SmallVectorImpl::iterator I = ResumeInsts.begin(), E = ResumeInsts.end(); I != E; ++I) { Instruction *RI = *I; // Replace the resuming instruction with a call to _Unwind_Resume (or the // appropriate target equivalent). llvm::Value *ExnValue; if (isa(RI)) ExnValue = CreateExceptionValueCall(RI->getParent()); else ExnValue = cast(RI)->getArgOperand(0); // Create the call... CallInst *CI = CallInst::Create(RewindFunction, ExnValue, "", RI); CI->setCallingConv(TLI->getLibcallCallingConv(RTLIB::UNWIND_RESUME)); // ...followed by an UnreachableInst, if it was an unwind. // Calls to llvm.eh.resume are typically already followed by this. if (isa(RI)) new UnreachableInst(RI->getContext(), RI); if (isa(RI)) ++NumUnwindsLowered; else ++NumResumesLowered; // Nuke the resume instruction. RI->eraseFromParent(); Changed = true; } return Changed; } /// MoveExceptionValueCalls - Ensure that eh.exception is only ever called from /// landing pads by replacing calls outside of landing pads with direct use of /// a register holding the appropriate value; this requires adding calls inside /// all landing pads to initialize the register. Also, move eh.exception calls /// inside landing pads to the start of the landing pad (optional, but may make /// things simpler for later passes). bool DwarfEHPrepare::MoveExceptionValueCalls() { // If the eh.exception intrinsic is not declared in the module then there is // nothing to do. Speed up compilation by checking for this common case. if (!ExceptionValueIntrinsic && !F->getParent()->getFunction(Intrinsic::getName(Intrinsic::eh_exception))) return false; bool Changed = false; // Move calls to eh.exception that are inside a landing pad to the start of // the landing pad. for (BBSet::const_iterator LI = LandingPads.begin(), LE = LandingPads.end(); LI != LE; ++LI) { BasicBlock *LP = *LI; for (BasicBlock::iterator II = LP->getFirstNonPHIOrDbg(), IE = LP->end(); II != IE;) if (EHExceptionInst *EI = dyn_cast(II++)) { // Found a call to eh.exception. if (!EI->use_empty()) { // If there is already a call to eh.exception at the start of the // landing pad, then get hold of it; otherwise create such a call. Value *CallAtStart = CreateExceptionValueCall(LP); // If the call was at the start of a landing pad then leave it alone. if (EI == CallAtStart) continue; EI->replaceAllUsesWith(CallAtStart); } EI->eraseFromParent(); ++NumExceptionValuesMoved; Changed = true; } } // Look for calls to eh.exception that are not in a landing pad. If one is // found, then a register that holds the exception value will be created in // each landing pad, and the SSAUpdater will be used to compute the values // returned by eh.exception calls outside of landing pads. SSAUpdater SSA; // Remember where we found the eh.exception call, to avoid rescanning earlier // basic blocks which we already know contain no eh.exception calls. bool FoundCallOutsideLandingPad = false; Function::iterator BB = F->begin(); for (Function::iterator BE = F->end(); BB != BE; ++BB) { // Skip over landing pads. if (LandingPads.count(BB)) continue; for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) if (isa(II)) { SSA.Initialize(II->getType(), II->getName()); FoundCallOutsideLandingPad = true; break; } if (FoundCallOutsideLandingPad) break; } // If all calls to eh.exception are in landing pads then we are done. if (!FoundCallOutsideLandingPad) return Changed; // Add a call to eh.exception at the start of each landing pad, and tell the // SSAUpdater that this is the value produced by the landing pad. for (BBSet::iterator LI = LandingPads.begin(), LE = LandingPads.end(); LI != LE; ++LI) SSA.AddAvailableValue(*LI, CreateExceptionValueCall(*LI)); // Now turn all calls to eh.exception that are not in a landing pad into a use // of the appropriate register. for (Function::iterator BE = F->end(); BB != BE; ++BB) { // Skip over landing pads. if (LandingPads.count(BB)) continue; for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE;) if (EHExceptionInst *EI = dyn_cast(II++)) { // Found a call to eh.exception, replace it with the value from any // upstream landing pad(s). EI->replaceAllUsesWith(SSA.GetValueAtEndOfBlock(BB)); EI->eraseFromParent(); ++NumExceptionValuesMoved; } } return true; } /// CreateExceptionValueCall - Insert a call to the eh.exception intrinsic at /// the start of the basic block (unless there already is one, in which case /// the existing call is returned). Instruction *DwarfEHPrepare::CreateExceptionValueCall(BasicBlock *BB) { Instruction *Start = BB->getFirstNonPHIOrDbg(); // Is this a call to eh.exception? if (IntrinsicInst *CI = dyn_cast(Start)) if (CI->getIntrinsicID() == Intrinsic::eh_exception) // Reuse the existing call. return Start; // Find the eh.exception intrinsic if we didn't already. if (!ExceptionValueIntrinsic) ExceptionValueIntrinsic = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_exception); // Create the call. return CallInst::Create(ExceptionValueIntrinsic, "eh.value.call", Start); } /// InsertUnwindResumeCalls - Convert the ResumeInsts that are still present /// into calls to the appropriate _Unwind_Resume function. bool DwarfEHPrepare::InsertUnwindResumeCalls() { bool UsesNewEH = false; SmallVector Resumes; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { TerminatorInst *TI = I->getTerminator(); if (ResumeInst *RI = dyn_cast(TI)) Resumes.push_back(RI); else if (InvokeInst *II = dyn_cast(TI)) UsesNewEH = II->getUnwindDest()->isLandingPad(); } if (Resumes.empty()) return UsesNewEH; // Find the rewind function if we didn't already. if (!RewindFunction) { LLVMContext &Ctx = Resumes[0]->getContext(); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), Type::getInt8PtrTy(Ctx), false); const char *RewindName = TLI->getLibcallName(RTLIB::UNWIND_RESUME); RewindFunction = F->getParent()->getOrInsertFunction(RewindName, FTy); } // Create the basic block where the _Unwind_Resume call will live. LLVMContext &Ctx = F->getContext(); BasicBlock *UnwindBB = BasicBlock::Create(Ctx, "unwind_resume", F); PHINode *PN = PHINode::Create(Type::getInt8PtrTy(Ctx), Resumes.size(), "exn.obj", UnwindBB); // Extract the exception object from the ResumeInst and add it to the PHI node // that feeds the _Unwind_Resume call. BasicBlock *UnwindBBDom = Resumes[0]->getParent(); for (SmallVectorImpl::iterator I = Resumes.begin(), E = Resumes.end(); I != E; ++I) { ResumeInst *RI = *I; BranchInst::Create(UnwindBB, RI->getParent()); ExtractValueInst *ExnObj = ExtractValueInst::Create(RI->getOperand(0), 0, "exn.obj", RI); PN->addIncoming(ExnObj, RI->getParent()); UnwindBBDom = DT->findNearestCommonDominator(RI->getParent(), UnwindBBDom); RI->eraseFromParent(); } // Call the function. CallInst *CI = CallInst::Create(RewindFunction, PN, "", UnwindBB); CI->setCallingConv(TLI->getLibcallCallingConv(RTLIB::UNWIND_RESUME)); // We never expect _Unwind_Resume to return. new UnreachableInst(Ctx, UnwindBB); // Now update DominatorTree analysis information. DT->addNewBlock(UnwindBB, UnwindBBDom); return true; } bool DwarfEHPrepare::runOnFunction(Function &Fn) { bool Changed = false; // Initialize internal state. DT = &getAnalysis(); // FIXME: We won't need this with the new EH. F = &Fn; if (InsertUnwindResumeCalls()) { // FIXME: The reset of this function can go once the new EH is done. LandingPads.clear(); return true; } // Ensure that only unwind edges end at landing pads (a landing pad is a // basic block where an invoke unwind edge ends). Changed |= NormalizeLandingPads(); // Turn unwind instructions and eh.resume calls into libcalls. Changed |= LowerUnwindsAndResumes(); // TODO: Move eh.selector calls to landing pads and combine them. // Move eh.exception calls to landing pads. Changed |= MoveExceptionValueCalls(); Changed |= HandleURoRInvokes(); LandingPads.clear(); return Changed; }