//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The inline spiller modifies the machine function directly instead of // inserting spills and restores in VirtRegMap. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "spiller" #include "Spiller.h" #include "VirtRegMap.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { class InlineSpiller : public Spiller { MachineFunction &mf_; LiveIntervals &lis_; VirtRegMap &vrm_; MachineFrameInfo &mfi_; MachineRegisterInfo &mri_; const TargetInstrInfo &tii_; const TargetRegisterInfo &tri_; const BitVector reserved_; // Variables that are valid during spill(), but used by multiple methods. LiveInterval *li_; const TargetRegisterClass *rc_; int stackSlot_; const SmallVectorImpl *spillIs_; ~InlineSpiller() {} public: InlineSpiller(MachineFunction *mf, LiveIntervals *lis, VirtRegMap *vrm) : mf_(*mf), lis_(*lis), vrm_(*vrm), mfi_(*mf->getFrameInfo()), mri_(mf->getRegInfo()), tii_(*mf->getTarget().getInstrInfo()), tri_(*mf->getTarget().getRegisterInfo()), reserved_(tri_.getReservedRegs(mf_)) {} void spill(LiveInterval *li, std::vector &newIntervals, SmallVectorImpl &spillIs, SlotIndex *earliestIndex); bool reMaterialize(LiveInterval &NewLI, MachineBasicBlock::iterator MI); void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI); void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI); }; } namespace llvm { Spiller *createInlineSpiller(MachineFunction *mf, LiveIntervals *lis, const MachineLoopInfo *mli, VirtRegMap *vrm) { return new InlineSpiller(mf, lis, vrm); } } /// reMaterialize - Attempt to rematerialize li_->reg before MI instead of /// reloading it. bool InlineSpiller::reMaterialize(LiveInterval &NewLI, MachineBasicBlock::iterator MI) { SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex(); LiveRange *LR = li_->getLiveRangeContaining(UseIdx); if (!LR) { DEBUG(dbgs() << "\tundef at " << UseIdx << ", adding flags.\n"); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg) MO.setIsUndef(); } return true; } // Find the instruction that defined this value of li_->reg. if (!LR->valno->isDefAccurate()) return false; SlotIndex OrigDefIdx = LR->valno->def; MachineInstr *OrigDefMI = lis_.getInstructionFromIndex(OrigDefIdx); if (!OrigDefMI) return false; // FIXME: Provide AliasAnalysis argument. if (!tii_.isTriviallyReMaterializable(OrigDefMI)) return false; // A rematerializable instruction may be using other virtual registers. // Make sure they are available at the new location. for (unsigned i = 0, e = OrigDefMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = OrigDefMI->getOperand(i); if (!MO.isReg() || !MO.getReg() || MO.getReg() == li_->reg) continue; // Reserved physregs are OK. Others are not (probably from coalescing). if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { if (reserved_.test(MO.getReg())) continue; else return false; } // We don't want to move any virtual defs. if (MO.isDef()) return false; // We have a use of a virtual register other than li_->reg. if (MO.isUndef()) continue; // We cannot depend on virtual registers in spillIs_. They will be spilled. for (unsigned si = 0, se = spillIs_->size(); si != se; ++si) if ((*spillIs_)[si]->reg == MO.getReg()) return false; // Is the register available here with the same value as at OrigDefMI? LiveInterval &ULI = lis_.getInterval(MO.getReg()); LiveRange *HereLR = ULI.getLiveRangeContaining(UseIdx); if (!HereLR) return false; LiveRange *DefLR = ULI.getLiveRangeContaining(OrigDefIdx.getUseIndex()); if (!DefLR || DefLR->valno != HereLR->valno) return false; } // Finally we can rematerialize OrigDefMI before MI. MachineBasicBlock &MBB = *MI->getParent(); tii_.reMaterialize(MBB, MI, NewLI.reg, 0, OrigDefMI, tri_); SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(--MI).getDefIndex(); DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' << *MI); VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, true, lis_.getVNInfoAllocator()); NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI)); return true; } /// insertReload - Insert a reload of NewLI.reg before MI. void InlineSpiller::insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI) { MachineBasicBlock &MBB = *MI->getParent(); SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex(); tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_); --MI; // Point to load instruction. SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); vrm_.addSpillSlotUse(stackSlot_, MI); DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, true, lis_.getVNInfoAllocator()); NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); } /// insertSpill - Insert a spill of NewLI.reg after MI. void InlineSpiller::insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI) { MachineBasicBlock &MBB = *MI->getParent(); SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex(); tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_); --MI; // Point to store instruction. SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); vrm_.addSpillSlotUse(stackSlot_, MI); DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, true, lis_.getVNInfoAllocator()); NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); } void InlineSpiller::spill(LiveInterval *li, std::vector &newIntervals, SmallVectorImpl &spillIs, SlotIndex *earliestIndex) { DEBUG(dbgs() << "Inline spilling " << *li << "\n"); assert(li->isSpillable() && "Attempting to spill already spilled value."); assert(!li->isStackSlot() && "Trying to spill a stack slot."); li_ = li; rc_ = mri_.getRegClass(li->reg); stackSlot_ = vrm_.assignVirt2StackSlot(li->reg); spillIs_ = &spillIs; // Iterate over instructions using register. for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(li->reg); MachineInstr *MI = RI.skipInstruction();) { // Analyze instruction. bool Reads, Writes; SmallVector Ops; tie(Reads, Writes) = MI->readsWritesVirtualRegister(li->reg, &Ops); // Allocate interval around instruction. // FIXME: Infer regclass from instruction alone. unsigned NewVReg = mri_.createVirtualRegister(rc_); vrm_.grow(); LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg); NewLI.markNotSpillable(); // Attempt remat instead of reload. bool NeedsReload = Reads && !reMaterialize(NewLI, MI); if (NeedsReload) insertReload(NewLI, MI); // Rewrite instruction operands. bool hasLiveDef = false; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = MI->getOperand(Ops[i]); MO.setReg(NewVReg); if (MO.isUse()) { if (!MI->isRegTiedToDefOperand(Ops[i])) MO.setIsKill(); } else { if (!MO.isDead()) hasLiveDef = true; } } // FIXME: Use a second vreg if instruction has no tied ops. if (Writes && hasLiveDef) insertSpill(NewLI, MI); DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); newIntervals.push_back(&NewLI); } }