//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the IntrinsicLowering class. // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/Support/Streams.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/SmallVector.h" using namespace llvm; template static void EnsureFunctionExists(Module &M, const char *Name, ArgIt ArgBegin, ArgIt ArgEnd, const Type *RetTy) { // Insert a correctly-typed definition now. std::vector ParamTys; for (ArgIt I = ArgBegin; I != ArgEnd; ++I) ParamTys.push_back(I->getType()); M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false)); } /// ReplaceCallWith - This function is used when we want to lower an intrinsic /// call to a call of an external function. This handles hard cases such as /// when there was already a prototype for the external function, and if that /// prototype doesn't match the arguments we expect to pass in. template static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI, ArgIt ArgBegin, ArgIt ArgEnd, const Type *RetTy, Constant *&FCache) { if (!FCache) { // If we haven't already looked up this function, check to see if the // program already contains a function with this name. Module *M = CI->getParent()->getParent()->getParent(); // Get or insert the definition now. std::vector ParamTys; for (ArgIt I = ArgBegin; I != ArgEnd; ++I) ParamTys.push_back((*I)->getType()); FCache = M->getOrInsertFunction(NewFn, FunctionType::get(RetTy, ParamTys, false)); } SmallVector Operands(ArgBegin, ArgEnd); CallInst *NewCI = new CallInst(FCache, &Operands[0], Operands.size(), CI->getName(), CI); if (!CI->use_empty()) CI->replaceAllUsesWith(NewCI); return NewCI; } void IntrinsicLowering::AddPrototypes(Module &M) { for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (I->isDeclaration() && !I->use_empty()) switch (I->getIntrinsicID()) { default: break; case Intrinsic::setjmp: EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(), Type::Int32Ty); break; case Intrinsic::longjmp: EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(), Type::VoidTy); break; case Intrinsic::siglongjmp: EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(), Type::VoidTy); break; case Intrinsic::memcpy_i32: case Intrinsic::memcpy_i64: M.getOrInsertFunction("memcpy", PointerType::get(Type::Int8Ty), PointerType::get(Type::Int8Ty), PointerType::get(Type::Int8Ty), TD.getIntPtrType(), (Type *)0); break; case Intrinsic::memmove_i32: case Intrinsic::memmove_i64: M.getOrInsertFunction("memmove", PointerType::get(Type::Int8Ty), PointerType::get(Type::Int8Ty), PointerType::get(Type::Int8Ty), TD.getIntPtrType(), (Type *)0); break; case Intrinsic::memset_i32: case Intrinsic::memset_i64: M.getOrInsertFunction("memset", PointerType::get(Type::Int8Ty), PointerType::get(Type::Int8Ty), Type::Int32Ty, TD.getIntPtrType(), (Type *)0); break; case Intrinsic::sqrt_f32: case Intrinsic::sqrt_f64: if(I->arg_begin()->getType() == Type::FloatTy) EnsureFunctionExists(M, "sqrtf", I->arg_begin(), I->arg_end(), Type::FloatTy); else EnsureFunctionExists(M, "sqrt", I->arg_begin(), I->arg_end(), Type::DoubleTy); break; } } /// LowerBSWAP - Emit the code to lower bswap of V before the specified /// instruction IP. static Value *LowerBSWAP(Value *V, Instruction *IP) { assert(V->getType()->isInteger() && "Can't bswap a non-integer type!"); unsigned BitSize = V->getType()->getPrimitiveSizeInBits(); switch(BitSize) { default: assert(0 && "Unhandled type size of value to byteswap!"); case 16: { Value *Tmp1 = BinaryOperator::createShl(V, ConstantInt::get(V->getType(),8),"bswap.2",IP); Value *Tmp2 = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(),8),"bswap.1",IP); V = BinaryOperator::createOr(Tmp1, Tmp2, "bswap.i16", IP); break; } case 32: { Value *Tmp4 = BinaryOperator::createShl(V, ConstantInt::get(V->getType(),24),"bswap.4", IP); Value *Tmp3 = BinaryOperator::createShl(V, ConstantInt::get(V->getType(),8),"bswap.3",IP); Value *Tmp2 = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(),8),"bswap.2",IP); Value *Tmp1 = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(),24),"bswap.1", IP); Tmp3 = BinaryOperator::createAnd(Tmp3, ConstantInt::get(Type::Int32Ty, 0xFF0000), "bswap.and3", IP); Tmp2 = BinaryOperator::createAnd(Tmp2, ConstantInt::get(Type::Int32Ty, 0xFF00), "bswap.and2", IP); Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or1", IP); Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or2", IP); V = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.i32", IP); break; } case 64: { Value *Tmp8 = BinaryOperator::createShl(V, ConstantInt::get(V->getType(),56),"bswap.8", IP); Value *Tmp7 = BinaryOperator::createShl(V, ConstantInt::get(V->getType(),40),"bswap.7", IP); Value *Tmp6 = BinaryOperator::createShl(V, ConstantInt::get(V->getType(),24),"bswap.6", IP); Value *Tmp5 = BinaryOperator::createShl(V, ConstantInt::get(V->getType(),8),"bswap.5", IP); Value* Tmp4 = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(),8),"bswap.4", IP); Value* Tmp3 = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(),24),"bswap.3", IP); Value* Tmp2 = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(),40),"bswap.2", IP); Value* Tmp1 = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(),56),"bswap.1", IP); Tmp7 = BinaryOperator::createAnd(Tmp7, ConstantInt::get(Type::Int64Ty, 0xFF000000000000ULL), "bswap.and7", IP); Tmp6 = BinaryOperator::createAnd(Tmp6, ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL), "bswap.and6", IP); Tmp5 = BinaryOperator::createAnd(Tmp5, ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL), "bswap.and5", IP); Tmp4 = BinaryOperator::createAnd(Tmp4, ConstantInt::get(Type::Int64Ty, 0xFF000000ULL), "bswap.and4", IP); Tmp3 = BinaryOperator::createAnd(Tmp3, ConstantInt::get(Type::Int64Ty, 0xFF0000ULL), "bswap.and3", IP); Tmp2 = BinaryOperator::createAnd(Tmp2, ConstantInt::get(Type::Int64Ty, 0xFF00ULL), "bswap.and2", IP); Tmp8 = BinaryOperator::createOr(Tmp8, Tmp7, "bswap.or1", IP); Tmp6 = BinaryOperator::createOr(Tmp6, Tmp5, "bswap.or2", IP); Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or3", IP); Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or4", IP); Tmp8 = BinaryOperator::createOr(Tmp8, Tmp6, "bswap.or5", IP); Tmp4 = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.or6", IP); V = BinaryOperator::createOr(Tmp8, Tmp4, "bswap.i64", IP); break; } } return V; } /// LowerCTPOP - Emit the code to lower ctpop of V before the specified /// instruction IP. static Value *LowerCTPOP(Value *V, Instruction *IP) { assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!"); static const uint64_t MaskValues[6] = { 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL }; unsigned BitSize = V->getType()->getPrimitiveSizeInBits(); for (unsigned i = 1, ct = 0; i != BitSize; i <<= 1, ++ct) { Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]); Value *LHS = BinaryOperator::createAnd(V, MaskCst, "cppop.and1", IP); Value *VShift = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(), i), "ctpop.sh", IP); Value *RHS = BinaryOperator::createAnd(VShift, MaskCst, "cppop.and2", IP); V = BinaryOperator::createAdd(LHS, RHS, "ctpop.step", IP); } return CastInst::createIntegerCast(V, Type::Int32Ty, false, "ctpop", IP); } /// LowerCTLZ - Emit the code to lower ctlz of V before the specified /// instruction IP. static Value *LowerCTLZ(Value *V, Instruction *IP) { unsigned BitSize = V->getType()->getPrimitiveSizeInBits(); for (unsigned i = 1; i != BitSize; i <<= 1) { Value *ShVal = ConstantInt::get(V->getType(), i); ShVal = BinaryOperator::createLShr(V, ShVal, "ctlz.sh", IP); V = BinaryOperator::createOr(V, ShVal, "ctlz.step", IP); } V = BinaryOperator::createNot(V, "", IP); return LowerCTPOP(V, IP); } /// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes /// three integer arguments. The first argument is the Value from which the /// bits will be selected. It may be of any bit width. The second and third /// arguments specify a range of bits to select with the second argument /// specifying the low bit and the third argument specifying the high bit. Both /// must be type i32. The result is the corresponding selected bits from the /// Value in the same width as the Value (first argument). If the low bit index /// is higher than the high bit index then the inverse selection is done and /// the bits are returned in inverse order. /// @brief Lowering of llvm.part.select intrinsic. static Instruction *LowerPartSelect(CallInst *CI) { // Make sure we're dealing with a part select intrinsic here Function *F = CI->getCalledFunction(); const FunctionType *FT = F->getFunctionType(); if (!F->isDeclaration() || !FT->getReturnType()->isInteger() || FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() || !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger()) return CI; // Get the intrinsic implementation function by converting all the . to _ // in the intrinsic's function name and then reconstructing the function // declaration. std::string Name(F->getName()); for (unsigned i = 4; i < Name.length(); ++i) if (Name[i] == '.') Name[i] = '_'; Module* M = F->getParent(); F = cast(M->getOrInsertFunction(Name, FT)); F->setLinkage(GlobalValue::WeakLinkage); // If we haven't defined the impl function yet, do so now if (F->isDeclaration()) { // Get the arguments to the function Function::arg_iterator args = F->arg_begin(); Value* Val = args++; Val->setName("Val"); Value* Lo = args++; Lo->setName("Lo"); Value* Hi = args++; Hi->setName("High"); // We want to select a range of bits here such that [Hi, Lo] is shifted // down to the low bits. However, it is quite possible that Hi is smaller // than Lo in which case the bits have to be reversed. // Create the blocks we will need for the two cases (forward, reverse) BasicBlock* CurBB = new BasicBlock("entry", F); BasicBlock *RevSize = new BasicBlock("revsize", CurBB->getParent()); BasicBlock *FwdSize = new BasicBlock("fwdsize", CurBB->getParent()); BasicBlock *Compute = new BasicBlock("compute", CurBB->getParent()); BasicBlock *Reverse = new BasicBlock("reverse", CurBB->getParent()); BasicBlock *RsltBlk = new BasicBlock("result", CurBB->getParent()); // Cast Hi and Lo to the size of Val so the widths are all the same if (Hi->getType() != Val->getType()) Hi = CastInst::createIntegerCast(Hi, Val->getType(), false, "tmp", CurBB); if (Lo->getType() != Val->getType()) Lo = CastInst::createIntegerCast(Lo, Val->getType(), false, "tmp", CurBB); // Compute a few things that both cases will need, up front. Constant* Zero = ConstantInt::get(Val->getType(), 0); Constant* One = ConstantInt::get(Val->getType(), 1); Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType()); // Compare the Hi and Lo bit positions. This is used to determine // which case we have (forward or reverse) ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB); new BranchInst(RevSize, FwdSize, Cmp, CurBB); // First, copmute the number of bits in the forward case. Instruction* FBitSize = BinaryOperator::createSub(Hi, Lo,"fbits", FwdSize); new BranchInst(Compute, FwdSize); // Second, compute the number of bits in the reverse case. Instruction* RBitSize = BinaryOperator::createSub(Lo, Hi, "rbits", RevSize); new BranchInst(Compute, RevSize); // Now, compute the bit range. Start by getting the bitsize and the shift // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for // the number of bits we want in the range. We shift the bits down to the // least significant bits, apply the mask to zero out unwanted high bits, // and we have computed the "forward" result. It may still need to be // reversed. // Get the BitSize from one of the two subtractions PHINode *BitSize = new PHINode(Val->getType(), "bits", Compute); BitSize->reserveOperandSpace(2); BitSize->addIncoming(FBitSize, FwdSize); BitSize->addIncoming(RBitSize, RevSize); // Get the ShiftAmount as the smaller of Hi/Lo PHINode *ShiftAmt = new PHINode(Val->getType(), "shiftamt", Compute); ShiftAmt->reserveOperandSpace(2); ShiftAmt->addIncoming(Lo, FwdSize); ShiftAmt->addIncoming(Hi, RevSize); // Increment the bit size Instruction *BitSizePlusOne = BinaryOperator::createAdd(BitSize, One, "bits", Compute); // Create a Mask to zero out the high order bits. Instruction* Mask = BinaryOperator::createShl(AllOnes, BitSizePlusOne, "mask", Compute); Mask = BinaryOperator::createNot(Mask, "mask", Compute); // Shift the bits down and apply the mask Instruction* FRes = BinaryOperator::createLShr(Val, ShiftAmt, "fres", Compute); FRes = BinaryOperator::createAnd(FRes, Mask, "fres", Compute); new BranchInst(Reverse, RsltBlk, Cmp, Compute); // In the Reverse block we have the mask already in FRes but we must reverse // it by shifting FRes bits right and putting them in RRes by shifting them // in from left. // First set up our loop counters PHINode *Count = new PHINode(Val->getType(), "count", Reverse); Count->reserveOperandSpace(2); Count->addIncoming(BitSizePlusOne, Compute); // Next, get the value that we are shifting. PHINode *BitsToShift = new PHINode(Val->getType(), "val", Reverse); BitsToShift->reserveOperandSpace(2); BitsToShift->addIncoming(FRes, Compute); // Finally, get the result of the last computation PHINode *RRes = new PHINode(Val->getType(), "rres", Reverse); RRes->reserveOperandSpace(2); RRes->addIncoming(Zero, Compute); // Decrement the counter Instruction *Decr = BinaryOperator::createSub(Count, One, "decr", Reverse); Count->addIncoming(Decr, Reverse); // Compute the Bit that we want to move Instruction *Bit = BinaryOperator::createAnd(BitsToShift, One, "bit", Reverse); // Compute the new value for next iteration. Instruction *NewVal = BinaryOperator::createLShr(BitsToShift, One, "rshift", Reverse); BitsToShift->addIncoming(NewVal, Reverse); // Shift the bit into the low bits of the result. Instruction *NewRes = BinaryOperator::createShl(RRes, One, "lshift", Reverse); NewRes = BinaryOperator::createOr(NewRes, Bit, "addbit", Reverse); RRes->addIncoming(NewRes, Reverse); // Terminate loop if we've moved all the bits. ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse); new BranchInst(RsltBlk, Reverse, Cond, Reverse); // Finally, in the result block, select one of the two results with a PHI // node and return the result; CurBB = RsltBlk; PHINode *BitSelect = new PHINode(Val->getType(), "part_select", CurBB); BitSelect->reserveOperandSpace(2); BitSelect->addIncoming(FRes, Compute); BitSelect->addIncoming(NewRes, Reverse); new ReturnInst(BitSelect, CurBB); } // Return a call to the implementation function Value *Args[3]; Args[0] = CI->getOperand(1); Args[1] = CI->getOperand(2); Args[2] = CI->getOperand(3); return new CallInst(F, Args, 3, CI->getName(), CI); } /// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes /// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High) /// The first two arguments can be any bit width. The result is the same width /// as %Value. The operation replaces bits between %Low and %High with the value /// in %Replacement. If %Replacement is not the same width, it is truncated or /// zero extended as appropriate to fit the bits being replaced. If %Low is /// greater than %High then the inverse set of bits are replaced. /// @brief Lowering of llvm.bit.part.set intrinsic. static Instruction *LowerPartSet(CallInst *CI) { // Make sure we're dealing with a part select intrinsic here Function *F = CI->getCalledFunction(); const FunctionType *FT = F->getFunctionType(); if (!F->isDeclaration() || !FT->getReturnType()->isInteger() || FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() || !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() || !FT->getParamType(3)->isInteger()) return CI; // Get the intrinsic implementation function by converting all the . to _ // in the intrinsic's function name and then reconstructing the function // declaration. std::string Name(F->getName()); for (unsigned i = 4; i < Name.length(); ++i) if (Name[i] == '.') Name[i] = '_'; Module* M = F->getParent(); F = cast(M->getOrInsertFunction(Name, FT)); F->setLinkage(GlobalValue::WeakLinkage); // If we haven't defined the impl function yet, do so now if (F->isDeclaration()) { // Note: the following code is based on code generated by llvm2cpp with // the following input. This is just *one* example of a generated function. // The functions vary by bit width of result and first two arguments. // The generated code has been changed to deal with any bit width not just // the 32/64 bitwidths used in the above sample. // // define i64 @part_set(i64 %Val, i32 %Rep, i32 %Lo, i32 %Hi) { // entry: // %is_forward = icmp ult i32 %Lo, %Hi // %Lo.pn = select i1 %is_forward, i32 %Hi, i32 %Lo // %Hi.pn = select i1 %is_forward, i32 %Lo, i32 %Hi // %iftmp.16.0 = sub i32 %Lo.pn, %Hi.pn // icmp ult i32 %iftmp.16.0, 32 // br i1 %1, label %cond_true11, label %cond_next19 // cond_true11: // %tmp13 = sub i32 32, %iftmp.16.0 // %tmp14 = lshr i32 -1, %tmp13 // %tmp16 = and i32 %tmp14, %Rep // br label %cond_next19 // cond_next19: // %iftmp.17.0 = phi i32 [ %tmp16, %cond_true11 ], [ %Rep, %entry ] // %tmp2021 = zext i32 %iftmp.17.0 to i64 // icmp ugt i32 %Lo, %Hi // br i1 %2, label %cond_next60, label %cond_true24 // cond_true24: // %tmp25.cast = zext i32 %Hi to i64 // %tmp26 = lshr i64 -1, %tmp25.cast // %tmp27.cast = zext i32 %Lo to i64 // %tmp28 = shl i64 %tmp26, %tmp27.cast // %tmp28not = xor i64 %tmp28, -1 // %tmp31 = shl i64 %tmp2021, %tmp27.cast // %tmp34 = and i64 %tmp28not, %Val // %Val_addr.064 = or i64 %tmp31, %tmp34 // ret i64 %Val_addr.064 // cond_next60: // %tmp39.cast = zext i32 %Lo to i64 // %tmp40 = shl i64 -1, %tmp39.cast // %tmp41.cast = zext i32 %Hi to i64 // %tmp42 = shl i64 -1, %tmp41.cast // %tmp45.demorgan = or i64 %tmp42, %tmp40 // %tmp45 = xor i64 %tmp45.demorgan, -1 // %tmp47 = and i64 %tmp45, %Val // %tmp50 = shl i64 %tmp2021, %tmp39.cast // %tmp52 = sub i32 32, %Hi // %tmp52.cast = zext i32 %tmp52 to i64 // %tmp54 = lshr i64 %tmp2021, %tmp52.cast // %tmp57 = or i64 %tmp50, %tmp47 // %Val_addr.0 = or i64 %tmp57, %tmp54 // ret i64 %Val_addr.0 // } // Get the arguments for the function. Function::arg_iterator args = F->arg_begin(); Value* Val = args++; Val->setName("Val"); Value* Rep = args++; Rep->setName("Rep"); Value* Lo = args++; Lo->setName("Lo"); Value* Hi = args++; Hi->setName("Hi"); // Get some types we need const IntegerType* ValTy = cast(Val->getType()); const IntegerType* RepTy = cast(Rep->getType()); uint32_t ValBits = ValTy->getBitWidth(); uint32_t RepBits = RepTy->getBitWidth(); // Constant Definitions ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits); ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy); ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy); BasicBlock* entry = new BasicBlock("entry",F,0); BasicBlock* large = new BasicBlock("large",F,0); BasicBlock* small = new BasicBlock("small",F,0); BasicBlock* forward = new BasicBlock("forward",F,0); BasicBlock* reverse = new BasicBlock("reverse",F,0); // Block entry (entry) // First, get the number of bits that we're placing as an i32 ICmpInst* is_forward = new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry); SelectInst* Lo_pn = new SelectInst(is_forward, Hi, Lo, "", entry); SelectInst* Hi_pn = new SelectInst(is_forward, Lo, Hi, "", entry); BinaryOperator* NumBits = BinaryOperator::createSub(Lo_pn, Hi_pn, "",entry); // Now, convert Lo and Hi to ValTy bit width if (ValBits > 32) { Hi = new ZExtInst(Hi, ValTy, "", entry); Lo = new ZExtInst(Lo, ValTy, "", entry); } else if (ValBits < 32) { Hi = new TruncInst(Hi, ValTy, "", entry); Lo = new TruncInst(Lo, ValTy, "", entry); } // Determine if the replacement bits are larger than the number of bits we // are replacing and deal with it. ICmpInst* is_large = new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry); new BranchInst(large, small, is_large, entry); // Block "large" Instruction* MaskBits = BinaryOperator::createSub(RepBitWidth, NumBits, "", large); MaskBits = CastInst::createIntegerCast(MaskBits, RepMask->getType(), false, "", large); BinaryOperator* Mask1 = BinaryOperator::createLShr(RepMask, MaskBits, "", large); BinaryOperator* Rep2 = BinaryOperator::createAnd(Mask1, Rep, "", large); new BranchInst(small, large); // Block "small" PHINode* Rep3 = new PHINode(RepTy, "", small); Rep3->reserveOperandSpace(2); Rep3->addIncoming(Rep2, large); Rep3->addIncoming(Rep, entry); Value* Rep4 = Rep3; if (ValBits > RepBits) Rep4 = new ZExtInst(Rep3, ValTy, "", small); else if (ValBits < RepBits) Rep4 = new TruncInst(Rep3, ValTy, "", small); ICmpInst* is_reverse = new ICmpInst(ICmpInst::ICMP_UGT, Lo, Hi, "", small); new BranchInst(reverse, forward, is_reverse, small); // Block "forward" Value* t1 = BinaryOperator::createLShr(ValMask, Hi, "", forward); Value* t2 = BinaryOperator::createShl(t1, Lo, "", forward); Value* nott2 = BinaryOperator::createXor(t2, ValMask, "", forward); Value* t3 = BinaryOperator::createShl(Rep4, Lo, "", forward); Value* t4 = BinaryOperator::createAnd(nott2, Val, "", forward); Value* FRslt = BinaryOperator::createOr(t3, t4, "", forward); new ReturnInst(FRslt, forward); // Block "reverse" Value* t5 = BinaryOperator::createShl(ValMask, Lo, "", reverse); Value* t6 = BinaryOperator::createShl(ValMask, Hi, "", reverse); Value* t7 = BinaryOperator::createOr(t6, t5, "", reverse); Value* t8 = BinaryOperator::createXor(t7, ValMask, "", reverse); Value* t9 = BinaryOperator::createAnd(t8, Val, "", reverse); Value* t10 = BinaryOperator::createShl(Rep4, Lo, "", reverse); if (32 < ValBits) RepBitWidth = cast(ConstantExpr::getZExt(RepBitWidth, ValTy)); else if (32 > ValBits) RepBitWidth = cast(ConstantExpr::getTrunc(RepBitWidth, ValTy)); Value* t11 = BinaryOperator::createSub(RepBitWidth, Hi, "", reverse); Value* t13 = BinaryOperator::createLShr(Rep4, t11, "",reverse); Value* t14 = BinaryOperator::createOr(t10, t9, "", reverse); Value* RRslt = BinaryOperator::createOr(t14, t13, "", reverse); new ReturnInst(RRslt, reverse); } // Return a call to the implementation function Value *Args[3]; Args[0] = CI->getOperand(1); Args[1] = CI->getOperand(2); Args[2] = CI->getOperand(3); Args[3] = CI->getOperand(4); return new CallInst(F, Args, 4, CI->getName(), CI); } void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) { Function *Callee = CI->getCalledFunction(); assert(Callee && "Cannot lower an indirect call!"); switch (Callee->getIntrinsicID()) { case Intrinsic::not_intrinsic: cerr << "Cannot lower a call to a non-intrinsic function '" << Callee->getName() << "'!\n"; abort(); default: cerr << "Error: Code generator does not support intrinsic function '" << Callee->getName() << "'!\n"; abort(); // The setjmp/longjmp intrinsics should only exist in the code if it was // never optimized (ie, right out of the CFE), or if it has been hacked on // by the lowerinvoke pass. In both cases, the right thing to do is to // convert the call to an explicit setjmp or longjmp call. case Intrinsic::setjmp: { static Constant *SetjmpFCache = 0; Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(), Type::Int32Ty, SetjmpFCache); if (CI->getType() != Type::VoidTy) CI->replaceAllUsesWith(V); break; } case Intrinsic::sigsetjmp: if (CI->getType() != Type::VoidTy) CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); break; case Intrinsic::longjmp: { static Constant *LongjmpFCache = 0; ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(), Type::VoidTy, LongjmpFCache); break; } case Intrinsic::siglongjmp: { // Insert the call to abort static Constant *AbortFCache = 0; ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(), Type::VoidTy, AbortFCache); break; } case Intrinsic::ctpop: CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI)); break; case Intrinsic::bswap: CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI)); break; case Intrinsic::ctlz: CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI)); break; case Intrinsic::cttz: { // cttz(x) -> ctpop(~X & (X-1)) Value *Src = CI->getOperand(1); Value *NotSrc = BinaryOperator::createNot(Src, Src->getName()+".not", CI); Value *SrcM1 = ConstantInt::get(Src->getType(), 1); SrcM1 = BinaryOperator::createSub(Src, SrcM1, "", CI); Src = LowerCTPOP(BinaryOperator::createAnd(NotSrc, SrcM1, "", CI), CI); CI->replaceAllUsesWith(Src); break; } case Intrinsic::part_select: CI->replaceAllUsesWith(LowerPartSelect(CI)); break; case Intrinsic::part_set: CI->replaceAllUsesWith(LowerPartSet(CI)); break; case Intrinsic::stacksave: case Intrinsic::stackrestore: { static bool Warned = false; if (!Warned) cerr << "WARNING: this target does not support the llvm.stack" << (Callee->getIntrinsicID() == Intrinsic::stacksave ? "save" : "restore") << " intrinsic.\n"; Warned = true; if (Callee->getIntrinsicID() == Intrinsic::stacksave) CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); break; } case Intrinsic::returnaddress: case Intrinsic::frameaddress: cerr << "WARNING: this target does not support the llvm." << (Callee->getIntrinsicID() == Intrinsic::returnaddress ? "return" : "frame") << "address intrinsic.\n"; CI->replaceAllUsesWith(ConstantPointerNull::get( cast(CI->getType()))); break; case Intrinsic::prefetch: break; // Simply strip out prefetches on unsupported architectures case Intrinsic::pcmarker: break; // Simply strip out pcmarker on unsupported architectures case Intrinsic::readcyclecounter: { cerr << "WARNING: this target does not support the llvm.readcyclecoun" << "ter intrinsic. It is being lowered to a constant 0\n"; CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0)); break; } case Intrinsic::dbg_stoppoint: case Intrinsic::dbg_region_start: case Intrinsic::dbg_region_end: case Intrinsic::dbg_func_start: case Intrinsic::dbg_declare: case Intrinsic::eh_exception: case Intrinsic::eh_selector: case Intrinsic::eh_filter: break; // Simply strip out debugging and eh intrinsics case Intrinsic::memcpy_i32: case Intrinsic::memcpy_i64: { static Constant *MemcpyFCache = 0; Value *Size = CI->getOperand(3); const Type *IntPtr = TD.getIntPtrType(); if (Size->getType()->getPrimitiveSizeInBits() < IntPtr->getPrimitiveSizeInBits()) Size = new ZExtInst(Size, IntPtr, "", CI); else if (Size->getType()->getPrimitiveSizeInBits() > IntPtr->getPrimitiveSizeInBits()) Size = new TruncInst(Size, IntPtr, "", CI); Value *Ops[3]; Ops[0] = CI->getOperand(1); Ops[1] = CI->getOperand(2); Ops[2] = Size; ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(), MemcpyFCache); break; } case Intrinsic::memmove_i32: case Intrinsic::memmove_i64: { static Constant *MemmoveFCache = 0; Value *Size = CI->getOperand(3); const Type *IntPtr = TD.getIntPtrType(); if (Size->getType()->getPrimitiveSizeInBits() < IntPtr->getPrimitiveSizeInBits()) Size = new ZExtInst(Size, IntPtr, "", CI); else if (Size->getType()->getPrimitiveSizeInBits() > IntPtr->getPrimitiveSizeInBits()) Size = new TruncInst(Size, IntPtr, "", CI); Value *Ops[3]; Ops[0] = CI->getOperand(1); Ops[1] = CI->getOperand(2); Ops[2] = Size; ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(), MemmoveFCache); break; } case Intrinsic::memset_i32: case Intrinsic::memset_i64: { static Constant *MemsetFCache = 0; Value *Size = CI->getOperand(3); const Type *IntPtr = TD.getIntPtrType(); if (Size->getType()->getPrimitiveSizeInBits() < IntPtr->getPrimitiveSizeInBits()) Size = new ZExtInst(Size, IntPtr, "", CI); else if (Size->getType()->getPrimitiveSizeInBits() > IntPtr->getPrimitiveSizeInBits()) Size = new TruncInst(Size, IntPtr, "", CI); Value *Ops[3]; Ops[0] = CI->getOperand(1); // Extend the amount to i32. Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI); Ops[2] = Size; ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(), MemsetFCache); break; } case Intrinsic::sqrt_f32: { static Constant *sqrtfFCache = 0; ReplaceCallWith("sqrtf", CI, CI->op_begin()+1, CI->op_end(), Type::FloatTy, sqrtfFCache); break; } case Intrinsic::sqrt_f64: { static Constant *sqrtFCache = 0; ReplaceCallWith("sqrt", CI, CI->op_begin()+1, CI->op_end(), Type::DoubleTy, sqrtFCache); break; } } assert(CI->use_empty() && "Lowering should have eliminated any uses of the intrinsic call!"); CI->eraseFromParent(); }