//===-- LiveInterval.cpp - Live Interval Representation -------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveRange and LiveInterval classes. Given some // numbering of each the machine instructions an interval [i, j) is said to be a // live interval for register v if there is no instruction with number j' > j // such that v is live at j' abd there is no instruction with number i' < i such // that v is live at i'. In this implementation intervals can have holes, // i.e. an interval might look like [1,20), [50,65), [1000,1001). Each // individual range is represented as an instance of LiveRange, and the whole // interval is represented as an instance of LiveInterval. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveInterval.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Target/MRegisterInfo.h" #include #include #include using namespace llvm; // An example for liveAt(): // // this = [1,4), liveAt(0) will return false. The instruction defining this // spans slots [0,3]. The interval belongs to an spilled definition of the // variable it represents. This is because slot 1 is used (def slot) and spans // up to slot 3 (store slot). // bool LiveInterval::liveAt(unsigned I) const { Ranges::const_iterator r = std::upper_bound(ranges.begin(), ranges.end(), I); if (r == ranges.begin()) return false; --r; return r->contains(I); } // overlaps - Return true if the intersection of the two live intervals is // not empty. // // An example for overlaps(): // // 0: A = ... // 4: B = ... // 8: C = A + B ;; last use of A // // The live intervals should look like: // // A = [3, 11) // B = [7, x) // C = [11, y) // // A->overlaps(C) should return false since we want to be able to join // A and C. // bool LiveInterval::overlapsFrom(const LiveInterval& other, const_iterator StartPos) const { const_iterator i = begin(); const_iterator ie = end(); const_iterator j = StartPos; const_iterator je = other.end(); assert((StartPos->start <= i->start || StartPos == other.begin()) && StartPos != other.end() && "Bogus start position hint!"); if (i->start < j->start) { i = std::upper_bound(i, ie, j->start); if (i != ranges.begin()) --i; } else if (j->start < i->start) { ++StartPos; if (StartPos != other.end() && StartPos->start <= i->start) { assert(StartPos < other.end() && i < end()); j = std::upper_bound(j, je, i->start); if (j != other.ranges.begin()) --j; } } else { return true; } if (j == je) return false; while (i != ie) { if (i->start > j->start) { std::swap(i, j); std::swap(ie, je); } if (i->end > j->start) return true; ++i; } return false; } /// NontrivialOverlap - Check to see if the two live ranges specified by i and j /// overlap. If so, check to see if they have value numbers that are not /// iIdx/jIdx respectively. If both conditions are true, return true. static inline bool NontrivialOverlap(const LiveRange &I, const LiveRange &J, unsigned iIdx, unsigned jIdx) { if (I.start == J.start) { // If this is not the allowed value merge, we cannot join. if (I.ValId != iIdx || J.ValId != jIdx) return true; } else if (I.start < J.start) { if (I.end > J.start && (I.ValId != iIdx || J.ValId != jIdx)) { return true; } } else { if (J.end > I.start && (I.ValId != iIdx || J.ValId != jIdx)) return true; } return false; } /// joinable - Two intervals are joinable if the either don't overlap at all /// or if the destination of the copy is a single assignment value, and it /// only overlaps with one value in the source interval. bool LiveInterval::joinable(const LiveInterval &other, unsigned CopyIdx) const { const LiveRange *SourceLR = other.getLiveRangeContaining(CopyIdx-1); const LiveRange *DestLR = getLiveRangeContaining(CopyIdx); assert(SourceLR && DestLR && "Not joining due to a copy?"); unsigned OtherValIdx = SourceLR->ValId; unsigned ThisValIdx = DestLR->ValId; Ranges::const_iterator i = ranges.begin(); Ranges::const_iterator ie = ranges.end(); Ranges::const_iterator j = other.ranges.begin(); Ranges::const_iterator je = other.ranges.end(); if (i->start < j->start) { i = std::upper_bound(i, ie, j->start); if (i != ranges.begin()) --i; } else if (j->start < i->start) { j = std::upper_bound(j, je, i->start); if (j != other.ranges.begin()) --j; } while (i != ie && j != je) { if (NontrivialOverlap(*i, *j, ThisValIdx, OtherValIdx)) return false; if (i->end < j->end) ++i; else ++j; } return true; } /// getOverlapingRanges - Given another live interval which is defined as a /// copy from this one, return a list of all of the live ranges where the /// two overlap and have different value numbers. void LiveInterval::getOverlapingRanges(const LiveInterval &other, unsigned CopyIdx, std::vector &Ranges) { const LiveRange *SourceLR = getLiveRangeContaining(CopyIdx-1); const LiveRange *DestLR = other.getLiveRangeContaining(CopyIdx); assert(SourceLR && DestLR && "Not joining due to a copy?"); unsigned OtherValIdx = SourceLR->ValId; unsigned ThisValIdx = DestLR->ValId; Ranges::iterator i = ranges.begin(); Ranges::iterator ie = ranges.end(); Ranges::const_iterator j = other.ranges.begin(); Ranges::const_iterator je = other.ranges.end(); if (i->start < j->start) { i = std::upper_bound(i, ie, j->start); if (i != ranges.begin()) --i; } else if (j->start < i->start) { j = std::upper_bound(j, je, i->start); if (j != other.ranges.begin()) --j; } while (i != ie && j != je) { if (NontrivialOverlap(*i, *j, ThisValIdx, OtherValIdx)) Ranges.push_back(&*i); if (i->end < j->end) ++i; else ++j; } } /// extendIntervalEndTo - This method is used when we want to extend the range /// specified by I to end at the specified endpoint. To do this, we should /// merge and eliminate all ranges that this will overlap with. The iterator is /// not invalidated. void LiveInterval::extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd) { assert(I != ranges.end() && "Not a valid interval!"); unsigned ValId = I->ValId; // Search for the first interval that we can't merge with. Ranges::iterator MergeTo = next(I); for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) { assert(MergeTo->ValId == ValId && "Cannot merge with differing values!"); } // If NewEnd was in the middle of an interval, make sure to get its endpoint. I->end = std::max(NewEnd, prior(MergeTo)->end); // Erase any dead ranges. ranges.erase(next(I), MergeTo); // If the newly formed range now touches the range after it and if they have // the same value number, merge the two ranges into one range. Ranges::iterator Next = next(I); if (Next != ranges.end() && Next->start <= I->end && Next->ValId == ValId) { I->end = Next->end; ranges.erase(Next); } } /// extendIntervalStartTo - This method is used when we want to extend the range /// specified by I to start at the specified endpoint. To do this, we should /// merge and eliminate all ranges that this will overlap with. LiveInterval::Ranges::iterator LiveInterval::extendIntervalStartTo(Ranges::iterator I, unsigned NewStart) { assert(I != ranges.end() && "Not a valid interval!"); unsigned ValId = I->ValId; // Search for the first interval that we can't merge with. Ranges::iterator MergeTo = I; do { if (MergeTo == ranges.begin()) { I->start = NewStart; ranges.erase(MergeTo, I); return I; } assert(MergeTo->ValId == ValId && "Cannot merge with differing values!"); --MergeTo; } while (NewStart <= MergeTo->start); // If we start in the middle of another interval, just delete a range and // extend that interval. if (MergeTo->end >= NewStart && MergeTo->ValId == ValId) { MergeTo->end = I->end; } else { // Otherwise, extend the interval right after. ++MergeTo; MergeTo->start = NewStart; MergeTo->end = I->end; } ranges.erase(next(MergeTo), next(I)); return MergeTo; } LiveInterval::Ranges::iterator LiveInterval::addRangeFrom(LiveRange LR, Ranges::iterator From) { unsigned Start = LR.start, End = LR.end; Ranges::iterator it = std::upper_bound(From, ranges.end(), Start); // If the inserted interval starts in the middle or right at the end of // another interval, just extend that interval to contain the range of LR. if (it != ranges.begin()) { Ranges::iterator B = prior(it); if (LR.ValId == B->ValId) { if (B->start <= Start && B->end >= Start) { extendIntervalEndTo(B, End); return B; } } else { // Check to make sure that we are not overlapping two live ranges with // different ValId's. assert(B->end <= Start && "Cannot overlap two LiveRanges with differing ValID's" " (did you def the same reg twice in a MachineInstr?)"); } } // Otherwise, if this range ends in the middle of, or right next to, another // interval, merge it into that interval. if (it != ranges.end()) if (LR.ValId == it->ValId) { if (it->start <= End) { it = extendIntervalStartTo(it, Start); // If LR is a complete superset of an interval, we may need to grow its // endpoint as well. if (End > it->end) extendIntervalEndTo(it, End); return it; } } else { // Check to make sure that we are not overlapping two live ranges with // different ValId's. assert(it->start >= End && "Cannot overlap two LiveRanges with differing ValID's"); } // Otherwise, this is just a new range that doesn't interact with anything. // Insert it. return ranges.insert(it, LR); } /// removeRange - Remove the specified range from this interval. Note that /// the range must already be in this interval in its entirety. void LiveInterval::removeRange(unsigned Start, unsigned End) { // Find the LiveRange containing this span. Ranges::iterator I = std::upper_bound(ranges.begin(), ranges.end(), Start); assert(I != ranges.begin() && "Range is not in interval!"); --I; assert(I->contains(Start) && I->contains(End-1) && "Range is not entirely in interval!"); // If the span we are removing is at the start of the LiveRange, adjust it. if (I->start == Start) { if (I->end == End) ranges.erase(I); // Removed the whole LiveRange. else I->start = End; return; } // Otherwise if the span we are removing is at the end of the LiveRange, // adjust the other way. if (I->end == End) { I->end = Start; return; } // Otherwise, we are splitting the LiveRange into two pieces. unsigned OldEnd = I->end; I->end = Start; // Trim the old interval. // Insert the new one. ranges.insert(next(I), LiveRange(End, OldEnd, I->ValId)); } /// getLiveRangeContaining - Return the live range that contains the /// specified index, or null if there is none. const LiveRange *LiveInterval::getLiveRangeContaining(unsigned Idx) const { Ranges::const_iterator It = std::upper_bound(ranges.begin(),ranges.end(),Idx); if (It != ranges.begin()) { const LiveRange &LR = *prior(It); if (LR.contains(Idx)) return &LR; } return 0; } /// join - Join two live intervals (this, and other) together. This operation /// is the result of a copy instruction in the source program, that occurs at /// index 'CopyIdx' that copies from 'Other' to 'this'. void LiveInterval::join(LiveInterval &Other, unsigned CopyIdx) { const LiveRange *SourceLR = Other.getLiveRangeContaining(CopyIdx-1); const LiveRange *DestLR = getLiveRangeContaining(CopyIdx); assert(SourceLR && DestLR && "Not joining due to a copy?"); unsigned MergedSrcValIdx = SourceLR->ValId; unsigned MergedDstValIdx = DestLR->ValId; // Try to do the least amount of work possible. In particular, if there are // more liverange chunks in the other set than there are in the 'this' set, // swap sets to merge the fewest chunks in possible. if (Other.ranges.size() > ranges.size()) { std::swap(MergedSrcValIdx, MergedDstValIdx); std::swap(ranges, Other.ranges); std::swap(NumValues, Other.NumValues); } // Join the ranges of other into the ranges of this interval. Ranges::iterator InsertPos = ranges.begin(); std::map Dst2SrcIdxMap; for (Ranges::iterator I = Other.ranges.begin(), E = Other.ranges.end(); I != E; ++I) { // Map the ValId in the other live range to the current live range. if (I->ValId == MergedSrcValIdx) I->ValId = MergedDstValIdx; else { unsigned &NV = Dst2SrcIdxMap[I->ValId]; if (NV == 0) NV = getNextValue(); I->ValId = NV; } InsertPos = addRangeFrom(*I, InsertPos); } weight += Other.weight; } std::ostream& llvm::operator<<(std::ostream& os, const LiveRange &LR) { return os << '[' << LR.start << ',' << LR.end << ':' << LR.ValId << ")"; } void LiveRange::dump() const { std::cerr << *this << "\n"; } void LiveInterval::print(std::ostream &OS, const MRegisterInfo *MRI) const { if (MRI && MRegisterInfo::isPhysicalRegister(reg)) OS << MRI->getName(reg); else OS << "%reg" << reg; OS << ',' << weight; if (empty()) OS << "EMPTY"; else { OS << " = "; for (LiveInterval::Ranges::const_iterator I = ranges.begin(), E = ranges.end(); I != E; ++I) OS << *I; } } void LiveInterval::dump() const { std::cerr << *this << "\n"; }