//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "liveintervals" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "VirtRegMap.h" #include "llvm/Value.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include #include using namespace llvm; namespace { RegisterAnalysis X("liveintervals", "Live Interval Analysis"); Statistic<> numIntervals ("liveintervals", "Number of original intervals"); Statistic<> numIntervalsAfter ("liveintervals", "Number of intervals after coalescing"); Statistic<> numJoins ("liveintervals", "Number of interval joins performed"); Statistic<> numPeep ("liveintervals", "Number of identity moves eliminated after coalescing"); Statistic<> numFolded ("liveintervals", "Number of loads/stores folded into instructions"); cl::opt EnableJoining("join-liveintervals", cl::desc("Join compatible live intervals"), cl::init(true)); } void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreservedID(PHIEliminationID); AU.addRequiredID(PHIEliminationID); AU.addRequiredID(TwoAddressInstructionPassID); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } void LiveIntervals::releaseMemory() { mi2iMap_.clear(); i2miMap_.clear(); r2iMap_.clear(); r2rMap_.clear(); } static bool isZeroLengthInterval(LiveInterval *li) { for (LiveInterval::Ranges::const_iterator i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) if (i->end - i->start > LiveIntervals::InstrSlots::NUM) return false; return true; } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); lv_ = &getAnalysis(); allocatableRegs_ = mri_->getAllocatableSet(fn); r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg()); // If this function has any live ins, insert a dummy instruction at the // beginning of the function that we will pretend "defines" the values. This // is to make the interval analysis simpler by providing a number. if (fn.livein_begin() != fn.livein_end()) { unsigned FirstLiveIn = fn.livein_begin()->first; // Find a reg class that contains this live in. const TargetRegisterClass *RC = 0; for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(), E = mri_->regclass_end(); RCI != E; ++RCI) if ((*RCI)->contains(FirstLiveIn)) { RC = *RCI; break; } MachineInstr *OldFirstMI = fn.begin()->begin(); mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(), FirstLiveIn, FirstLiveIn, RC); assert(OldFirstMI != fn.begin()->begin() && "copyRetToReg didn't insert anything!"); } // number MachineInstrs unsigned miIndex = 0; for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end(); mbb != mbbEnd; ++mbb) for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); mi != miEnd; ++mi) { bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second; assert(inserted && "multiple MachineInstr -> index mappings"); i2miMap_.push_back(mi); miIndex += InstrSlots::NUM; } // Note intervals due to live-in values. if (fn.livein_begin() != fn.livein_end()) { MachineBasicBlock *Entry = fn.begin(); for (MachineFunction::livein_iterator I = fn.livein_begin(), E = fn.livein_end(); I != E; ++I) { handlePhysicalRegisterDef(Entry, Entry->begin(), getOrCreateInterval(I->first), 0, 0, true); for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS) handlePhysicalRegisterDef(Entry, Entry->begin(), getOrCreateInterval(*AS), 0, 0, true); } } computeIntervals(); numIntervals += getNumIntervals(); DEBUG(std::cerr << "********** INTERVALS **********\n"; for (iterator I = begin(), E = end(); I != E; ++I) { I->second.print(std::cerr, mri_); std::cerr << "\n"; }); // join intervals if requested if (EnableJoining) joinIntervals(); numIntervalsAfter += getNumIntervals(); // perform a final pass over the instructions and compute spill // weights, coalesce virtual registers and remove identity moves const LoopInfo& loopInfo = getAnalysis(); for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); mii != mie; ) { // if the move will be an identity move delete it unsigned srcReg, dstReg, RegRep; if (tii_->isMoveInstr(*mii, srcReg, dstReg) && (RegRep = rep(srcReg)) == rep(dstReg)) { // remove from def list LiveInterval &interval = getOrCreateInterval(RegRep); // remove index -> MachineInstr and // MachineInstr -> index mappings Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii); if (mi2i != mi2iMap_.end()) { i2miMap_[mi2i->second/InstrSlots::NUM] = 0; mi2iMap_.erase(mi2i); } mii = mbbi->erase(mii); ++numPeep; } else { for (unsigned i = 0; i < mii->getNumOperands(); ++i) { const MachineOperand& mop = mii->getOperand(i); if (mop.isRegister() && mop.getReg() && MRegisterInfo::isVirtualRegister(mop.getReg())) { // replace register with representative register unsigned reg = rep(mop.getReg()); mii->getOperand(i).setReg(reg); LiveInterval &RegInt = getInterval(reg); RegInt.weight += (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth); } } ++mii; } } } for (iterator I = begin(), E = end(); I != E; ++I) { LiveInterval &li = I->second; if (MRegisterInfo::isVirtualRegister(li.reg)) // If the live interval legnth is essentially zero, i.e. in every live // range the use follows def immediately, it doesn't make sense to spill // it and hope it will be easier to allocate for this li. if (isZeroLengthInterval(&li)) li.weight = float(HUGE_VAL); } DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(std::ostream &O, const Module* ) const { O << "********** INTERVALS **********\n"; for (const_iterator I = begin(), E = end(); I != E; ++I) { I->second.print(std::cerr, mri_); std::cerr << "\n"; } O << "********** MACHINEINSTRS **********\n"; for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; for (MachineBasicBlock::iterator mii = mbbi->begin(), mie = mbbi->end(); mii != mie; ++mii) { O << getInstructionIndex(mii) << '\t' << *mii; } } } std::vector LiveIntervals:: addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) { // since this is called after the analysis is done we don't know if // LiveVariables is available lv_ = getAnalysisToUpdate(); std::vector added; assert(li.weight != HUGE_VAL && "attempt to spill already spilled interval!"); DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: " << li << '\n'); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg); for (LiveInterval::Ranges::const_iterator i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) { unsigned index = getBaseIndex(i->start); unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM; for (; index != end; index += InstrSlots::NUM) { // skip deleted instructions while (index != end && !getInstructionFromIndex(index)) index += InstrSlots::NUM; if (index == end) break; MachineInstr *MI = getInstructionFromIndex(index); // NewRegLiveIn - This instruction might have multiple uses of the spilled // register. In this case, for the first use, keep track of the new vreg // that we reload it into. If we see a second use, reuse this vreg // instead of creating live ranges for two reloads. unsigned NewRegLiveIn = 0; for_operand: for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& mop = MI->getOperand(i); if (mop.isRegister() && mop.getReg() == li.reg) { if (NewRegLiveIn && mop.isUse()) { // We already emitted a reload of this value, reuse it for // subsequent operands. MI->getOperand(i).setReg(NewRegLiveIn); DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn << " for operand #" << i << '\n'); } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) { // Attempt to fold the memory reference into the instruction. If we // can do this, we don't need to insert spill code. if (lv_) lv_->instructionChanged(MI, fmi); MachineBasicBlock &MBB = *MI->getParent(); vrm.virtFolded(li.reg, MI, i, fmi); mi2iMap_.erase(MI); i2miMap_[index/InstrSlots::NUM] = fmi; mi2iMap_[fmi] = index; MI = MBB.insert(MBB.erase(MI), fmi); ++numFolded; // Folding the load/store can completely change the instruction in // unpredictable ways, rescan it from the beginning. goto for_operand; } else { // This is tricky. We need to add information in the interval about // the spill code so we have to use our extra load/store slots. // // If we have a use we are going to have a load so we start the // interval from the load slot onwards. Otherwise we start from the // def slot. unsigned start = (mop.isUse() ? getLoadIndex(index) : getDefIndex(index)); // If we have a def we are going to have a store right after it so // we end the interval after the use of the next // instruction. Otherwise we end after the use of this instruction. unsigned end = 1 + (mop.isDef() ? getStoreIndex(index) : getUseIndex(index)); // create a new register for this spill NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc); MI->getOperand(i).setReg(NewRegLiveIn); vrm.grow(); vrm.assignVirt2StackSlot(NewRegLiveIn, slot); LiveInterval& nI = getOrCreateInterval(NewRegLiveIn); assert(nI.empty()); // the spill weight is now infinity as it // cannot be spilled again nI.weight = float(HUGE_VAL); LiveRange LR(start, end, nI.getNextValue()); DEBUG(std::cerr << " +" << LR); nI.addRange(LR); added.push_back(&nI); // update live variables if it is available if (lv_) lv_->addVirtualRegisterKilled(NewRegLiveIn, MI); // If this is a live in, reuse it for subsequent live-ins. If it's // a def, we can't do this. if (!mop.isUse()) NewRegLiveIn = 0; DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n'); } } } } } return added; } void LiveIntervals::printRegName(unsigned reg) const { if (MRegisterInfo::isPhysicalRegister(reg)) std::cerr << mri_->getName(reg); else std::cerr << "%reg" << reg; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb, MachineBasicBlock::iterator mi, LiveInterval& interval) { DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. if (interval.empty()) { // Get the Idx of the defining instructions. unsigned defIndex = getDefIndex(getInstructionIndex(mi)); unsigned ValNum = interval.getNextValue(); assert(ValNum == 0 && "First value in interval is not 0?"); ValNum = 0; // Clue in the optimizer. // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? unsigned killIdx; if (vi.Kills[0] != mi) killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; else killIdx = defIndex+1; // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.empty() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNum); interval.addRange(LR); DEBUG(std::cerr << " +" << LR << "\n"); return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum); DEBUG(std::cerr << " +" << NewLR); interval.addRange(NewLR); // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { if (vi.AliveBlocks[i]) { MachineBasicBlock* mbb = mf_->getBlockNumbered(i); if (!mbb->empty()) { LiveRange LR(getInstructionIndex(&mbb->front()), getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum); interval.addRange(LR); DEBUG(std::cerr << " +" << LR); } } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; LiveRange LR(getInstructionIndex(Kill->getParent()->begin()), getUseIndex(getInstructionIndex(Kill))+1, ValNum); interval.addRange(LR); DEBUG(std::cerr << " +" << LR); } } else { // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is the first // operand, and is a def-and-use. if (mi->getOperand(0).isRegister() && mi->getOperand(0).getReg() == interval.reg && mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst)); unsigned RedefIndex = getDefIndex(getInstructionIndex(mi)); // Delete the initial value, which should be short and continuous, // becuase the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); LiveRange LR(DefIndex, RedefIndex, interval.getNextValue()); DEBUG(std::cerr << " replace range with " << LR); interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (lv_->RegisterDefIsDead(mi, interval.reg)) interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0)); DEBUG(std::cerr << "RESULT: " << interval); } else { // Otherwise, this must be because of phi elimination. If this is the // first redefinition of the vreg that we have seen, go back and change // the live range in the PHI block to be a different value number. if (interval.containsOneValue()) { assert(vi.Kills.size() == 1 && "PHI elimination vreg should have one kill, the PHI itself!"); // Remove the old range that we now know has an incorrect number. MachineInstr *Killer = vi.Kills[0]; unsigned Start = getInstructionIndex(Killer->getParent()->begin()); unsigned End = getUseIndex(getInstructionIndex(Killer))+1; DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: " << interval << "\n"); interval.removeRange(Start, End); DEBUG(std::cerr << "RESULT: " << interval); // Replace the interval with one of a NEW value number. LiveRange LR(Start, End, interval.getNextValue()); DEBUG(std::cerr << " replace range with " << LR); interval.addRange(LR); DEBUG(std::cerr << "RESULT: " << interval); } // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. unsigned defIndex = getDefIndex(getInstructionIndex(mi)); LiveRange LR(defIndex, getInstructionIndex(&mbb->back()) + InstrSlots::NUM, interval.getNextValue()); interval.addRange(LR); DEBUG(std::cerr << " +" << LR); } } DEBUG(std::cerr << '\n'); } void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator mi, LiveInterval& interval, unsigned SrcReg, unsigned DestReg, bool isLiveIn) { // A physical register cannot be live across basic block, so its // lifetime must end somewhere in its defining basic block. DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); typedef LiveVariables::killed_iterator KillIter; unsigned baseIndex = getInstructionIndex(mi); unsigned start = getDefIndex(baseIndex); unsigned end = start; // If it is not used after definition, it is considered dead at // the instruction defining it. Hence its interval is: // [defSlot(def), defSlot(def)+1) if (lv_->RegisterDefIsDead(mi, interval.reg)) { DEBUG(std::cerr << " dead"); end = getDefIndex(start) + 1; goto exit; } // If it is not dead on definition, it must be killed by a // subsequent instruction. Hence its interval is: // [defSlot(def), useSlot(kill)+1) while (++mi != MBB->end()) { baseIndex += InstrSlots::NUM; if (lv_->KillsRegister(mi, interval.reg)) { DEBUG(std::cerr << " killed"); end = getUseIndex(baseIndex) + 1; goto exit; } } // The only case we should have a dead physreg here without a killing or // instruction where we know it's dead is if it is live-in to the function // and never used. assert(isLiveIn && "physreg was not killed in defining block!"); end = getDefIndex(start) + 1; // It's dead. exit: assert(start < end && "did not find end of interval?"); // Finally, if this is defining a new range for the physical register, and if // that physreg is just a copy from a vreg, and if THAT vreg was a copy from // the physreg, then the new fragment has the same value as the one copied // into the vreg. if (interval.reg == DestReg && !interval.empty() && MRegisterInfo::isVirtualRegister(SrcReg)) { // Get the live interval for the vreg, see if it is defined by a copy. LiveInterval &SrcInterval = getOrCreateInterval(SrcReg); if (SrcInterval.containsOneValue()) { assert(!SrcInterval.empty() && "Can't contain a value and be empty!"); // Get the first index of the first range. Though the interval may have // multiple liveranges in it, we only check the first. unsigned StartIdx = SrcInterval.begin()->start; MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx); // Check to see if the vreg was defined by a copy instruction, and that // the source was this physreg. unsigned VRegSrcSrc, VRegSrcDest; if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) && SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) { // Okay, now we know that the vreg was defined by a copy from this // physreg. Find the value number being copied and use it as the value // for this range. const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1); if (DefRange) { LiveRange LR(start, end, DefRange->ValId); interval.addRange(LR); DEBUG(std::cerr << " +" << LR << '\n'); return; } } } } LiveRange LR(start, end, interval.getNextValue()); interval.addRange(LR); DEBUG(std::cerr << " +" << LR << '\n'); } void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, unsigned reg) { if (MRegisterInfo::isVirtualRegister(reg)) handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg)); else if (allocatableRegs_[reg]) { unsigned SrcReg = 0, DestReg = 0; if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) SrcReg = DestReg = 0; handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg), SrcReg, DestReg); for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS) handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS), SrcReg, DestReg); } } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n"); DEBUG(std::cerr << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'); bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end(); for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) { MachineBasicBlock* mbb = I; DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n"); MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; } for (; mi != miEnd; ++mi) { const TargetInstrDescriptor& tid = tm_->getInstrInfo()->get(mi->getOpcode()); DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi); // handle implicit defs for (const unsigned* id = tid.ImplicitDefs; *id; ++id) handleRegisterDef(mbb, mi, *id); // handle explicit defs for (int i = mi->getNumOperands() - 1; i >= 0; --i) { MachineOperand& mop = mi->getOperand(i); // handle register defs - build intervals if (mop.isRegister() && mop.getReg() && mop.isDef()) handleRegisterDef(mbb, mi, mop.getReg()); } } } } /// IntA is defined as a copy from IntB and we know it only has one value /// number. If all of the places that IntA and IntB overlap are defined by /// copies from IntA to IntB, we know that these two ranges can really be /// merged if we adjust the value numbers. If it is safe, adjust the value /// numbers and return true, allowing coalescing to occur. bool LiveIntervals:: AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA, LiveInterval &IntB, unsigned CopyIdx) { std::vector Ranges; IntA.getOverlapingRanges(IntB, CopyIdx, Ranges); assert(!Ranges.empty() && "Why didn't we do a simple join of this?"); unsigned IntBRep = rep(IntB.reg); // Check to see if all of the overlaps (entries in Ranges) are defined by a // copy from IntA. If not, exit. for (unsigned i = 0, e = Ranges.size(); i != e; ++i) { unsigned Idx = Ranges[i]->start; MachineInstr *MI = getInstructionFromIndex(Idx); unsigned SrcReg, DestReg; if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false; // If this copy isn't actually defining this range, it must be a live // range spanning basic blocks or something. if (rep(DestReg) != rep(IntA.reg)) return false; // Check to see if this is coming from IntB. If not, bail out. if (rep(SrcReg) != IntBRep) return false; } // Okay, we can change this one. Get the IntB value number that IntA is // copied from. unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId; // Change all of the value numbers to the same as what we IntA is copied from. for (unsigned i = 0, e = Ranges.size(); i != e; ++i) Ranges[i]->ValId = ActualValNo; return true; } void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) { DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n"); for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end(); mi != mie; ++mi) { DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi); // we only join virtual registers with allocatable // physical registers since we do not have liveness information // on not allocatable physical registers unsigned SrcReg, DestReg; if (tii_->isMoveInstr(*mi, SrcReg, DestReg) && (MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&& (MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){ // Get representative registers. SrcReg = rep(SrcReg); DestReg = rep(DestReg); // If they are already joined we continue. if (SrcReg == DestReg) continue; // If they are both physical registers, we cannot join them. if (MRegisterInfo::isPhysicalRegister(SrcReg) && MRegisterInfo::isPhysicalRegister(DestReg)) continue; // If they are not of the same register class, we cannot join them. if (differingRegisterClasses(SrcReg, DestReg)) continue; LiveInterval &SrcInt = getInterval(SrcReg); LiveInterval &DestInt = getInterval(DestReg); assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg && "Register mapping is horribly broken!"); DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt << ": "); // If two intervals contain a single value and are joined by a copy, it // does not matter if the intervals overlap, they can always be joined. bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue(); unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi)); // If the intervals think that this is joinable, do so now. if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx)) Joinable = true; // If DestInt is actually a copy from SrcInt (which we know) that is used // to define another value of SrcInt, we can change the other range of // SrcInt to be the value of the range that defines DestInt, allowing a // coalesce. if (!Joinable && DestInt.containsOneValue() && AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx)) Joinable = true; if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) { DEBUG(std::cerr << "Interference!\n"); } else { DestInt.join(SrcInt, MIDefIdx); DEBUG(std::cerr << "Joined. Result = " << DestInt << "\n"); if (!MRegisterInfo::isPhysicalRegister(SrcReg)) { r2iMap_.erase(SrcReg); r2rMap_[SrcReg] = DestReg; } else { // Otherwise merge the data structures the other way so we don't lose // the physreg information. r2rMap_[DestReg] = SrcReg; DestInt.reg = SrcReg; SrcInt.swap(DestInt); r2iMap_.erase(DestReg); } ++numJoins; } } } } namespace { // DepthMBBCompare - Comparison predicate that sort first based on the loop // depth of the basic block (the unsigned), and then on the MBB number. struct DepthMBBCompare { typedef std::pair DepthMBBPair; bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { if (LHS.first > RHS.first) return true; // Deeper loops first return LHS.first == RHS.first && LHS.second->getNumber() < RHS.second->getNumber(); } }; } void LiveIntervals::joinIntervals() { DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n"); const LoopInfo &LI = getAnalysis(); if (LI.begin() == LI.end()) { // If there are no loops in the function, join intervals in function order. for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) joinIntervalsInMachineBB(I); } else { // Otherwise, join intervals in inner loops before other intervals. // Unfortunately we can't just iterate over loop hierarchy here because // there may be more MBB's than BB's. Collect MBB's for sorting. std::vector > MBBs; for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I)); // Sort by loop depth. std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); // Finally, join intervals in loop nest order. for (unsigned i = 0, e = MBBs.size(); i != e; ++i) joinIntervalsInMachineBB(MBBs[i].second); } DEBUG(std::cerr << "*** Register mapping ***\n"); DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i) if (r2rMap_[i]) std::cerr << " reg " << i << " -> reg " << r2rMap_[i] << "\n"); } /// Return true if the two specified registers belong to different register /// classes. The registers may be either phys or virt regs. bool LiveIntervals::differingRegisterClasses(unsigned RegA, unsigned RegB) const { // Get the register classes for the first reg. if (MRegisterInfo::isPhysicalRegister(RegA)) { assert(MRegisterInfo::isVirtualRegister(RegB) && "Shouldn't consider two physregs!"); return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA); } // Compare against the regclass for the second reg. const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA); if (MRegisterInfo::isVirtualRegister(RegB)) return RegClass != mf_->getSSARegMap()->getRegClass(RegB); else return !RegClass->contains(RegB); } bool LiveIntervals::overlapsAliases(const LiveInterval *LHS, const LiveInterval *RHS) const { if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) { if (!MRegisterInfo::isPhysicalRegister(RHS->reg)) return false; // vreg-vreg merge has no aliases! std::swap(LHS, RHS); } assert(MRegisterInfo::isPhysicalRegister(LHS->reg) && MRegisterInfo::isVirtualRegister(RHS->reg) && "first interval must describe a physical register"); for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS) if (RHS->overlaps(getInterval(*AS))) return true; return false; } LiveInterval LiveIntervals::createInterval(unsigned reg) { float Weight = MRegisterInfo::isPhysicalRegister(reg) ? (float)HUGE_VAL :0.0F; return LiveInterval(reg, Weight); }