//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // LiveIntervalUnion represents a coalesced set of live intervals. This may be // used during coalescing to represent a congruence class, or during register // allocation to model liveness of a physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "LiveIntervalUnion.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/CodeGen/MachineLoopRanges.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; // Merge a LiveInterval's segments. Guarantee no overlaps. void LiveIntervalUnion::unify(LiveInterval &VirtReg) { if (VirtReg.empty()) return; ++Tag; // Insert each of the virtual register's live segments into the map. LiveInterval::iterator RegPos = VirtReg.begin(); LiveInterval::iterator RegEnd = VirtReg.end(); SegmentIter SegPos = Segments.find(RegPos->start); for (;;) { SegPos.insert(RegPos->start, RegPos->end, &VirtReg); if (++RegPos == RegEnd) return; SegPos.advanceTo(RegPos->start); } } // Remove a live virtual register's segments from this union. void LiveIntervalUnion::extract(LiveInterval &VirtReg) { if (VirtReg.empty()) return; ++Tag; // Remove each of the virtual register's live segments from the map. LiveInterval::iterator RegPos = VirtReg.begin(); LiveInterval::iterator RegEnd = VirtReg.end(); SegmentIter SegPos = Segments.find(RegPos->start); for (;;) { assert(SegPos.value() == &VirtReg && "Inconsistent LiveInterval"); SegPos.erase(); if (!SegPos.valid()) return; // Skip all segments that may have been coalesced. RegPos = VirtReg.advanceTo(RegPos, SegPos.start()); if (RegPos == RegEnd) return; SegPos.advanceTo(RegPos->start); } } void LiveIntervalUnion::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const { OS << "LIU " << PrintReg(RepReg, TRI); if (empty()) { OS << " empty\n"; return; } for (LiveSegments::const_iterator SI = Segments.begin(); SI.valid(); ++SI) { OS << " [" << SI.start() << ' ' << SI.stop() << "):" << PrintReg(SI.value()->reg, TRI); } OS << '\n'; } void LiveIntervalUnion::InterferenceResult::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const { OS << '[' << start() << ';' << stop() << "):" << PrintReg(interference()->reg, TRI); } void LiveIntervalUnion::Query::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { OS << "Interferences with "; LiveUnion->print(OS, TRI); InterferenceResult IR = firstInterference(); while (isInterference(IR)) { OS << " "; IR.print(OS, TRI); OS << '\n'; nextInterference(IR); } } #ifndef NDEBUG // Verify the live intervals in this union and add them to the visited set. void LiveIntervalUnion::verify(LiveVirtRegBitSet& VisitedVRegs) { for (SegmentIter SI = Segments.begin(); SI.valid(); ++SI) VisitedVRegs.set(SI.value()->reg); } #endif //!NDEBUG // Private interface accessed by Query. // // Find a pair of segments that intersect, one in the live virtual register // (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query) // is responsible for advancing the LiveIntervalUnion segments to find a // "notable" intersection, which requires query-specific logic. // // This design assumes only a fast mechanism for intersecting a single live // virtual register segment with a set of LiveIntervalUnion segments. This may // be ok since most virtual registers have very few segments. If we had a data // structure that optimizd MxN intersection of segments, then we would bypass // the loop that advances within the LiveInterval. // // If no intersection exists, set VirtRegI = VirtRegEnd, and set SI to the first // segment whose start point is greater than LiveInterval's end point. // // Assumes that segments are sorted by start position in both // LiveInterval and LiveSegments. void LiveIntervalUnion::Query::findIntersection(InterferenceResult &IR) const { // Search until reaching the end of the LiveUnion segments. LiveInterval::iterator VirtRegEnd = VirtReg->end(); if (IR.VirtRegI == VirtRegEnd) return; while (IR.LiveUnionI.valid()) { // Slowly advance the live virtual reg iterator until we surpass the next // segment in LiveUnion. // // Note: If this is ever used for coalescing of fixed registers and we have // a live vreg with thousands of segments, then change this code to use // upperBound instead. IR.VirtRegI = VirtReg->advanceTo(IR.VirtRegI, IR.LiveUnionI.start()); if (IR.VirtRegI == VirtRegEnd) break; // Retain current (nonoverlapping) LiveUnionI // VirtRegI may have advanced far beyond LiveUnionI, catch up. IR.LiveUnionI.advanceTo(IR.VirtRegI->start); // Check if no LiveUnionI exists with VirtRegI->Start < LiveUnionI.end if (!IR.LiveUnionI.valid()) break; if (IR.LiveUnionI.start() < IR.VirtRegI->end) { assert(overlap(*IR.VirtRegI, IR.LiveUnionI) && "upperBound postcondition"); break; } } if (!IR.LiveUnionI.valid()) IR.VirtRegI = VirtRegEnd; } // Find the first intersection, and cache interference info // (retain segment iterators into both VirtReg and LiveUnion). const LiveIntervalUnion::InterferenceResult & LiveIntervalUnion::Query::firstInterference() { if (CheckedFirstInterference) return FirstInterference; CheckedFirstInterference = true; InterferenceResult &IR = FirstInterference; // Quickly skip interference check for empty sets. if (VirtReg->empty() || LiveUnion->empty()) { IR.VirtRegI = VirtReg->end(); } else if (VirtReg->beginIndex() < LiveUnion->startIndex()) { // VirtReg starts first, perform double binary search. IR.VirtRegI = VirtReg->find(LiveUnion->startIndex()); if (IR.VirtRegI != VirtReg->end()) IR.LiveUnionI = LiveUnion->find(IR.VirtRegI->start); } else { // LiveUnion starts first, perform double binary search. IR.LiveUnionI = LiveUnion->find(VirtReg->beginIndex()); if (IR.LiveUnionI.valid()) IR.VirtRegI = VirtReg->find(IR.LiveUnionI.start()); else IR.VirtRegI = VirtReg->end(); } findIntersection(FirstInterference); assert((IR.VirtRegI == VirtReg->end() || IR.LiveUnionI.valid()) && "Uninitialized iterator"); return FirstInterference; } // Treat the result as an iterator and advance to the next interfering pair // of segments. This is a plain iterator with no filter. bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &IR) const { assert(isInterference(IR) && "iteration past end of interferences"); // Advance either the VirtReg or LiveUnion segment to ensure that we visit all // unique overlapping pairs. if (IR.VirtRegI->end < IR.LiveUnionI.stop()) { if (++IR.VirtRegI == VirtReg->end()) return false; } else { if (!(++IR.LiveUnionI).valid()) { IR.VirtRegI = VirtReg->end(); return false; } } // Short-circuit findIntersection() if possible. if (overlap(*IR.VirtRegI, IR.LiveUnionI)) return true; // Find the next intersection. findIntersection(IR); return isInterference(IR); } // Scan the vector of interfering virtual registers in this union. Assume it's // quite small. bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *VirtReg) const { SmallVectorImpl::const_iterator I = std::find(InterferingVRegs.begin(), InterferingVRegs.end(), VirtReg); return I != InterferingVRegs.end(); } // Count the number of virtual registers in this union that interfere with this // query's live virtual register. // // The number of times that we either advance IR.VirtRegI or call // LiveUnion.upperBound() will be no more than the number of holes in // VirtReg. So each invocation of collectInterferingVRegs() takes // time proportional to |VirtReg Holes| * time(LiveUnion.upperBound()). // // For comments on how to speed it up, see Query::findIntersection(). unsigned LiveIntervalUnion::Query:: collectInterferingVRegs(unsigned MaxInterferingRegs) { InterferenceResult IR = firstInterference(); LiveInterval::iterator VirtRegEnd = VirtReg->end(); LiveInterval *RecentInterferingVReg = NULL; if (IR.VirtRegI != VirtRegEnd) while (IR.LiveUnionI.valid()) { // Advance the union's iterator to reach an unseen interfering vreg. do { if (IR.LiveUnionI.value() == RecentInterferingVReg) continue; if (!isSeenInterference(IR.LiveUnionI.value())) break; // Cache the most recent interfering vreg to bypass isSeenInterference. RecentInterferingVReg = IR.LiveUnionI.value(); } while ((++IR.LiveUnionI).valid()); if (!IR.LiveUnionI.valid()) break; // Advance the VirtReg iterator until surpassing the next segment in // LiveUnion. IR.VirtRegI = VirtReg->advanceTo(IR.VirtRegI, IR.LiveUnionI.start()); if (IR.VirtRegI == VirtRegEnd) break; // Check for intersection with the union's segment. if (overlap(*IR.VirtRegI, IR.LiveUnionI)) { if (!IR.LiveUnionI.value()->isSpillable()) SeenUnspillableVReg = true; if (InterferingVRegs.size() == MaxInterferingRegs) // Leave SeenAllInterferences set to false to indicate that at least one // interference exists beyond those we collected. return MaxInterferingRegs; InterferingVRegs.push_back(IR.LiveUnionI.value()); // Cache the most recent interfering vreg to bypass isSeenInterference. RecentInterferingVReg = IR.LiveUnionI.value(); ++IR.LiveUnionI; continue; } // VirtRegI may have advanced far beyond LiveUnionI, // do a fast intersection test to "catch up" IR.LiveUnionI.advanceTo(IR.VirtRegI->start); } SeenAllInterferences = true; return InterferingVRegs.size(); } bool LiveIntervalUnion::Query::checkLoopInterference(MachineLoopRange *Loop) { // VirtReg is likely live throughout the loop, so start by checking LIU-Loop // overlaps. IntervalMapOverlaps Overlaps(LiveUnion->getMap(), Loop->getMap()); if (!Overlaps.valid()) return false; // The loop is overlapping an LIU assignment. Check VirtReg as well. LiveInterval::iterator VRI = VirtReg->find(Overlaps.start()); for (;;) { if (VRI == VirtReg->end()) return false; if (VRI->start < Overlaps.stop()) return true; Overlaps.advanceTo(VRI->start); if (!Overlaps.valid()) return false; if (Overlaps.start() < VRI->end) return true; VRI = VirtReg->advanceTo(VRI, Overlaps.start()); } }