//===--- LiveRangeEdit.cpp - Basic tools for editing a register live range --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LiveRangeEdit class represents changes done to a virtual register when it // is spilled or split. //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "LiveRangeEdit.h" #include "VirtRegMap.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg, LiveIntervals &LIS, VirtRegMap &VRM) { MachineRegisterInfo &MRI = VRM.getRegInfo(); unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); VRM.grow(); VRM.setIsSplitFromReg(VReg, VRM.getOriginal(OldReg)); LiveInterval &LI = LIS.getOrCreateInterval(VReg); newRegs_.push_back(&LI); return LI; } bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI, const TargetInstrInfo &tii, AliasAnalysis *aa) { assert(DefMI && "Missing instruction"); scannedRemattable_ = true; if (!tii.isTriviallyReMaterializable(DefMI, aa)) return false; remattable_.insert(VNI); return true; } void LiveRangeEdit::scanRemattable(LiveIntervals &lis, const TargetInstrInfo &tii, AliasAnalysis *aa) { for (LiveInterval::vni_iterator I = parent_.vni_begin(), E = parent_.vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; MachineInstr *DefMI = lis.getInstructionFromIndex(VNI->def); if (!DefMI) continue; checkRematerializable(VNI, DefMI, tii, aa); } scannedRemattable_ = true; } bool LiveRangeEdit::anyRematerializable(LiveIntervals &lis, const TargetInstrInfo &tii, AliasAnalysis *aa) { if (!scannedRemattable_) scanRemattable(lis, tii, aa); return !remattable_.empty(); } /// allUsesAvailableAt - Return true if all registers used by OrigMI at /// OrigIdx are also available with the same value at UseIdx. bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx, LiveIntervals &lis) { OrigIdx = OrigIdx.getUseIndex(); UseIdx = UseIdx.getUseIndex(); for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = OrigMI->getOperand(i); if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; // Reserved registers are OK. if (MO.isUndef() || !lis.hasInterval(MO.getReg())) continue; // We cannot depend on virtual registers in uselessRegs_. if (uselessRegs_) for (unsigned ui = 0, ue = uselessRegs_->size(); ui != ue; ++ui) if ((*uselessRegs_)[ui]->reg == MO.getReg()) return false; LiveInterval &li = lis.getInterval(MO.getReg()); const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); if (!OVNI) continue; if (OVNI != li.getVNInfoAt(UseIdx)) return false; } return true; } bool LiveRangeEdit::canRematerializeAt(Remat &RM, SlotIndex UseIdx, bool cheapAsAMove, LiveIntervals &lis) { assert(scannedRemattable_ && "Call anyRematerializable first"); // Use scanRemattable info. if (!remattable_.count(RM.ParentVNI)) return false; // No defining instruction provided. SlotIndex DefIdx; if (RM.OrigMI) DefIdx = lis.getInstructionIndex(RM.OrigMI); else { DefIdx = RM.ParentVNI->def; RM.OrigMI = lis.getInstructionFromIndex(DefIdx); assert(RM.OrigMI && "No defining instruction for remattable value"); } // If only cheap remats were requested, bail out early. if (cheapAsAMove && !RM.OrigMI->getDesc().isAsCheapAsAMove()) return false; // Verify that all used registers are available with the same values. if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx, lis)) return false; return true; } SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, const Remat &RM, LiveIntervals &lis, const TargetInstrInfo &tii, const TargetRegisterInfo &tri, bool Late) { assert(RM.OrigMI && "Invalid remat"); tii.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri); rematted_.insert(RM.ParentVNI); return lis.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late) .getDefIndex(); } void LiveRangeEdit::eraseVirtReg(unsigned Reg, LiveIntervals &LIS) { if (delegate_ && delegate_->LRE_CanEraseVirtReg(Reg)) LIS.removeInterval(Reg); } bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, SmallVectorImpl &Dead, MachineRegisterInfo &MRI, LiveIntervals &LIS, const TargetInstrInfo &TII) { MachineInstr *DefMI = 0, *UseMI = 0; // Check that there is a single def and a single use. for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg), E = MRI.reg_nodbg_end(); I != E; ++I) { MachineOperand &MO = I.getOperand(); MachineInstr *MI = MO.getParent(); if (MO.isDef()) { if (DefMI && DefMI != MI) return false; if (!MI->getDesc().canFoldAsLoad()) return false; DefMI = MI; } else if (!MO.isUndef()) { if (UseMI && UseMI != MI) return false; // FIXME: Targets don't know how to fold subreg uses. if (MO.getSubReg()) return false; UseMI = MI; } } if (!DefMI || !UseMI) return false; DEBUG(dbgs() << "Try to fold single def: " << *DefMI << " into single use: " << *UseMI); SmallVector Ops; if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) return false; MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI); if (!FoldMI) return false; DEBUG(dbgs() << " folded: " << *FoldMI); LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI); UseMI->eraseFromParent(); DefMI->addRegisterDead(LI->reg, 0); Dead.push_back(DefMI); ++NumDCEFoldedLoads; return true; } void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl &Dead, LiveIntervals &LIS, VirtRegMap &VRM, const TargetInstrInfo &TII) { SetVector, SmallPtrSet > ToShrink; MachineRegisterInfo &MRI = VRM.getRegInfo(); for (;;) { // Erase all dead defs. while (!Dead.empty()) { MachineInstr *MI = Dead.pop_back_val(); assert(MI->allDefsAreDead() && "Def isn't really dead"); SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex(); // Never delete inline asm. if (MI->isInlineAsm()) { DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); continue; } // Use the same criteria as DeadMachineInstructionElim. bool SawStore = false; if (!MI->isSafeToMove(&TII, 0, SawStore)) { DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); continue; } DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); // Check for live intervals that may shrink for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (!MOI->isReg()) continue; unsigned Reg = MOI->getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; LiveInterval &LI = LIS.getInterval(Reg); // Shrink read registers, unless it is likely to be expensive and // unlikely to change anything. We typically don't want to shrink the // PIC base register that has lots of uses everywhere. // Always shrink COPY uses that probably come from live range splitting. if (MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) || LI.killedAt(Idx))) ToShrink.insert(&LI); // Remove defined value. if (MOI->isDef()) { if (VNInfo *VNI = LI.getVNInfoAt(Idx)) { if (delegate_) delegate_->LRE_WillShrinkVirtReg(LI.reg); LI.removeValNo(VNI); if (LI.empty()) { ToShrink.remove(&LI); eraseVirtReg(Reg, LIS); } } } } if (delegate_) delegate_->LRE_WillEraseInstruction(MI); LIS.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); ++NumDCEDeleted; } if (ToShrink.empty()) break; // Shrink just one live interval. Then delete new dead defs. LiveInterval *LI = ToShrink.back(); ToShrink.pop_back(); if (foldAsLoad(LI, Dead, MRI, LIS, TII)) continue; if (delegate_) delegate_->LRE_WillShrinkVirtReg(LI->reg); if (!LIS.shrinkToUses(LI, &Dead)) continue; // LI may have been separated, create new intervals. LI->RenumberValues(LIS); ConnectedVNInfoEqClasses ConEQ(LIS); unsigned NumComp = ConEQ.Classify(LI); if (NumComp <= 1) continue; ++NumFracRanges; bool IsOriginal = VRM.getOriginal(LI->reg) == LI->reg; DEBUG(dbgs() << NumComp << " components: " << *LI << '\n'); SmallVector Dups(1, LI); for (unsigned i = 1; i != NumComp; ++i) { Dups.push_back(&createFrom(LI->reg, LIS, VRM)); // If LI is an original interval that hasn't been split yet, make the new // intervals their own originals instead of referring to LI. The original // interval must contain all the split products, and LI doesn't. if (IsOriginal) VRM.setIsSplitFromReg(Dups.back()->reg, 0); if (delegate_) delegate_->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg); } ConEQ.Distribute(&Dups[0], MRI); } } void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, LiveIntervals &LIS, const MachineLoopInfo &Loops) { VirtRegAuxInfo VRAI(MF, LIS, Loops); MachineRegisterInfo &MRI = MF.getRegInfo(); for (iterator I = begin(), E = end(); I != E; ++I) { LiveInterval &LI = **I; if (MRI.recomputeRegClass(LI.reg, MF.getTarget())) DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to " << MRI.getRegClass(LI.reg)->getName() << '\n'); VRAI.CalculateWeightAndHint(LI); } }