//===--- LiveRangeEdit.cpp - Basic tools for editing a register live range --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LiveRangeEdit class represents changes done to a virtual register when it // is spilled or split. //===----------------------------------------------------------------------===// #include "LiveRangeEdit.h" #include "VirtRegMap.h" #include "llvm/ADT/SetVector.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; LiveInterval &LiveRangeEdit::create(MachineRegisterInfo &mri, LiveIntervals &lis, VirtRegMap &vrm) { const TargetRegisterClass *RC = mri.getRegClass(getReg()); unsigned VReg = mri.createVirtualRegister(RC); vrm.grow(); vrm.setIsSplitFromReg(VReg, vrm.getOriginal(getReg())); LiveInterval &li = lis.getOrCreateInterval(VReg); newRegs_.push_back(&li); return li; } void LiveRangeEdit::scanRemattable(LiveIntervals &lis, const TargetInstrInfo &tii, AliasAnalysis *aa) { for (LiveInterval::vni_iterator I = parent_.vni_begin(), E = parent_.vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; MachineInstr *DefMI = lis.getInstructionFromIndex(VNI->def); if (!DefMI) continue; if (tii.isTriviallyReMaterializable(DefMI, aa)) remattable_.insert(VNI); } scannedRemattable_ = true; } bool LiveRangeEdit::anyRematerializable(LiveIntervals &lis, const TargetInstrInfo &tii, AliasAnalysis *aa) { if (!scannedRemattable_) scanRemattable(lis, tii, aa); return !remattable_.empty(); } /// allUsesAvailableAt - Return true if all registers used by OrigMI at /// OrigIdx are also available with the same value at UseIdx. bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx, LiveIntervals &lis) { OrigIdx = OrigIdx.getUseIndex(); UseIdx = UseIdx.getUseIndex(); for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = OrigMI->getOperand(i); if (!MO.isReg() || !MO.getReg() || MO.getReg() == getReg()) continue; // Reserved registers are OK. if (MO.isUndef() || !lis.hasInterval(MO.getReg())) continue; // We don't want to move any defs. if (MO.isDef()) return false; // We cannot depend on virtual registers in uselessRegs_. if (uselessRegs_) for (unsigned ui = 0, ue = uselessRegs_->size(); ui != ue; ++ui) if ((*uselessRegs_)[ui]->reg == MO.getReg()) return false; LiveInterval &li = lis.getInterval(MO.getReg()); const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); if (!OVNI) continue; if (OVNI != li.getVNInfoAt(UseIdx)) return false; } return true; } bool LiveRangeEdit::canRematerializeAt(Remat &RM, SlotIndex UseIdx, bool cheapAsAMove, LiveIntervals &lis) { assert(scannedRemattable_ && "Call anyRematerializable first"); // Use scanRemattable info. if (!remattable_.count(RM.ParentVNI)) return false; // No defining instruction. RM.OrigMI = lis.getInstructionFromIndex(RM.ParentVNI->def); assert(RM.OrigMI && "Defining instruction for remattable value disappeared"); // If only cheap remats were requested, bail out early. if (cheapAsAMove && !RM.OrigMI->getDesc().isAsCheapAsAMove()) return false; // Verify that all used registers are available with the same values. if (!allUsesAvailableAt(RM.OrigMI, RM.ParentVNI->def, UseIdx, lis)) return false; return true; } SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, const Remat &RM, LiveIntervals &lis, const TargetInstrInfo &tii, const TargetRegisterInfo &tri) { assert(RM.OrigMI && "Invalid remat"); tii.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri); rematted_.insert(RM.ParentVNI); return lis.InsertMachineInstrInMaps(--MI).getDefIndex(); } void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl &Dead, LiveIntervals &LIS, const TargetInstrInfo &TII) { SetVector, SmallPtrSet > ToShrink; for (;;) { // Erase all dead defs. while (!Dead.empty()) { MachineInstr *MI = Dead.pop_back_val(); assert(MI->allDefsAreDead() && "Def isn't really dead"); // Never delete inline asm. if (MI->isInlineAsm()) continue; // Use the same criteria as DeadMachineInstructionElim. bool SawStore = false; if (!MI->isSafeToMove(&TII, 0, SawStore)) continue; SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex(); DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); // Check for live intervals that may shrink for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (!MOI->isReg()) continue; unsigned Reg = MOI->getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; LiveInterval &LI = LIS.getInterval(Reg); // Remove defined value. if (MOI->isDef()) if (VNInfo *VNI = LI.getVNInfoAt(Idx)) LI.removeValNo(VNI); // Shrink read registers. if (MI->readsVirtualRegister(Reg)) ToShrink.insert(&LI); } if (delegate_) delegate_->LRE_WillEraseInstruction(MI); LIS.RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); } if (ToShrink.empty()) break; // Shrink just one live interval. Then delete new dead defs. LIS.shrinkToUses(ToShrink.back(), &Dead); ToShrink.pop_back(); } }