//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using a sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveVariables.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; char LiveVariables::ID = 0; char &llvm::LiveVariablesID = LiveVariables::ID; INITIALIZE_PASS_BEGIN(LiveVariables, "livevars", "Live Variable Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim) INITIALIZE_PASS_END(LiveVariables, "livevars", "Live Variable Analysis", false, false) void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(UnreachableMachineBlockElimID); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } MachineInstr * LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { for (unsigned i = 0, e = Kills.size(); i != e; ++i) if (Kills[i]->getParent() == MBB) return Kills[i]; return nullptr; } void LiveVariables::VarInfo::dump() const { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) dbgs() << " Alive in blocks: "; for (SparseBitVector<>::iterator I = AliveBlocks.begin(), E = AliveBlocks.end(); I != E; ++I) dbgs() << *I << ", "; dbgs() << "\n Killed by:"; if (Kills.empty()) dbgs() << " No instructions.\n"; else { for (unsigned i = 0, e = Kills.size(); i != e; ++i) dbgs() << "\n #" << i << ": " << *Kills[i]; dbgs() << "\n"; } #endif } /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && "getVarInfo: not a virtual register!"); VirtRegInfo.grow(RegIdx); return VirtRegInfo[RegIdx]; } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB, std::vector &WorkList) { unsigned BBNum = MBB->getNumber(); // Check to see if this basic block is one of the killing blocks. If so, // remove it. for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) if (VRInfo.Kills[i]->getParent() == MBB) { VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry break; } if (MBB == DefBlock) return; // Terminate recursion if (VRInfo.AliveBlocks.test(BBNum)) return; // We already know the block is live // Mark the variable known alive in this bb VRInfo.AliveBlocks.set(BBNum); assert(MBB != &MF->front() && "Can't find reaching def for virtreg"); WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend()); } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB) { std::vector WorkList; MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); while (!WorkList.empty()) { MachineBasicBlock *Pred = WorkList.back(); WorkList.pop_back(); MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); } } void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr *MI) { assert(MRI->getVRegDef(reg) && "Register use before def!"); unsigned BBNum = MBB->getNumber(); VarInfo& VRInfo = getVarInfo(reg); // Check to see if this basic block is already a kill block. if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { // Yes, this register is killed in this basic block already. Increase the // live range by updating the kill instruction. VRInfo.Kills.back() = MI; return; } #ifndef NDEBUG for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); #endif // This situation can occur: // // ,------. // | | // | v // | t2 = phi ... t1 ... // | | // | v // | t1 = ... // | ... = ... t1 ... // | | // `------' // // where there is a use in a PHI node that's a predecessor to the defining // block. We don't want to mark all predecessors as having the value "alive" // in this case. if (MBB == MRI->getVRegDef(reg)->getParent()) return; // Add a new kill entry for this basic block. If this virtual register is // already marked as alive in this basic block, that means it is alive in at // least one of the successor blocks, it's not a kill. if (!VRInfo.AliveBlocks.test(BBNum)) VRInfo.Kills.push_back(MI); // Update all dominating blocks to mark them as "known live". for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), E = MBB->pred_end(); PI != E; ++PI) MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); } void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { VarInfo &VRInfo = getVarInfo(Reg); if (VRInfo.AliveBlocks.empty()) // If vr is not alive in any block, then defaults to dead. VRInfo.Kills.push_back(MI); } /// FindLastPartialDef - Return the last partial def of the specified register. /// Also returns the sub-registers that're defined by the instruction. MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, SmallSet &PartDefRegs) { unsigned LastDefReg = 0; unsigned LastDefDist = 0; MachineInstr *LastDef = nullptr; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; MachineInstr *Def = PhysRegDef[SubReg]; if (!Def) continue; unsigned Dist = DistanceMap[Def]; if (Dist > LastDefDist) { LastDefReg = SubReg; LastDef = Def; LastDefDist = Dist; } } if (!LastDef) return nullptr; PartDefRegs.insert(LastDefReg); for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { MachineOperand &MO = LastDef->getOperand(i); if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) continue; unsigned DefReg = MO.getReg(); if (TRI->isSubRegister(Reg, DefReg)) { for (MCSubRegIterator SubRegs(DefReg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) PartDefRegs.insert(*SubRegs); } } return LastDef; } /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add /// implicit defs to a machine instruction if there was an earlier def of its /// super-register. void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { MachineInstr *LastDef = PhysRegDef[Reg]; // If there was a previous use or a "full" def all is well. if (!LastDef && !PhysRegUse[Reg]) { // Otherwise, the last sub-register def implicitly defines this register. // e.g. // AH = // AL = ... , // = AH // ... // = EAX // All of the sub-registers must have been defined before the use of Reg! SmallSet PartDefRegs; MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); // If LastPartialDef is NULL, it must be using a livein register. if (LastPartialDef) { LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, true/*IsImp*/)); PhysRegDef[Reg] = LastPartialDef; SmallSet Processed; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; if (Processed.count(SubReg)) continue; if (PartDefRegs.count(SubReg)) continue; // This part of Reg was defined before the last partial def. It's killed // here. LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, false/*IsDef*/, true/*IsImp*/)); PhysRegDef[SubReg] = LastPartialDef; for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) Processed.insert(*SS); } } } else if (LastDef && !PhysRegUse[Reg] && !LastDef->findRegisterDefOperand(Reg)) // Last def defines the super register, add an implicit def of reg. LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, true/*IsImp*/)); // Remember this use. for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) PhysRegUse[*SubRegs] = MI; } /// FindLastRefOrPartRef - Return the last reference or partial reference of /// the specified register. MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { MachineInstr *LastDef = PhysRegDef[Reg]; MachineInstr *LastUse = PhysRegUse[Reg]; if (!LastDef && !LastUse) return nullptr; MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; unsigned LastPartDefDist = 0; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; MachineInstr *Def = PhysRegDef[SubReg]; if (Def && Def != LastDef) { // There was a def of this sub-register in between. This is a partial // def, keep track of the last one. unsigned Dist = DistanceMap[Def]; if (Dist > LastPartDefDist) LastPartDefDist = Dist; } else if (MachineInstr *Use = PhysRegUse[SubReg]) { unsigned Dist = DistanceMap[Use]; if (Dist > LastRefOrPartRefDist) { LastRefOrPartRefDist = Dist; LastRefOrPartRef = Use; } } } return LastRefOrPartRef; } bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { MachineInstr *LastDef = PhysRegDef[Reg]; MachineInstr *LastUse = PhysRegUse[Reg]; if (!LastDef && !LastUse) return false; MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; // The whole register is used. // AL = // AH = // // = AX // = AL, AX // AX = // // Or whole register is defined, but not used at all. // AX = // ... // AX = // // Or whole register is defined, but only partly used. // AX = AL // = AL // AX = MachineInstr *LastPartDef = nullptr; unsigned LastPartDefDist = 0; SmallSet PartUses; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; MachineInstr *Def = PhysRegDef[SubReg]; if (Def && Def != LastDef) { // There was a def of this sub-register in between. This is a partial // def, keep track of the last one. unsigned Dist = DistanceMap[Def]; if (Dist > LastPartDefDist) { LastPartDefDist = Dist; LastPartDef = Def; } continue; } if (MachineInstr *Use = PhysRegUse[SubReg]) { for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid(); ++SS) PartUses.insert(*SS); unsigned Dist = DistanceMap[Use]; if (Dist > LastRefOrPartRefDist) { LastRefOrPartRefDist = Dist; LastRefOrPartRef = Use; } } } if (!PhysRegUse[Reg]) { // Partial uses. Mark register def dead and add implicit def of // sub-registers which are used. // EAX = op AL // That is, EAX def is dead but AL def extends pass it. PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; if (!PartUses.count(SubReg)) continue; bool NeedDef = true; if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); if (MO) { NeedDef = false; assert(!MO->isDead()); } } if (NeedDef) PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, true/*IsDef*/, true/*IsImp*/)); MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); if (LastSubRef) LastSubRef->addRegisterKilled(SubReg, TRI, true); else { LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid(); ++SS) PhysRegUse[*SS] = LastRefOrPartRef; } for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) PartUses.erase(*SS); } } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { if (LastPartDef) // The last partial def kills the register. LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, true/*IsImp*/, true/*IsKill*/)); else { MachineOperand *MO = LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; // If the last reference is the last def, then it's not used at all. // That is, unless we are currently processing the last reference itself. LastRefOrPartRef->addRegisterDead(Reg, TRI, true); if (NeedEC) { // If we are adding a subreg def and the superreg def is marked early // clobber, add an early clobber marker to the subreg def. MO = LastRefOrPartRef->findRegisterDefOperand(Reg); if (MO) MO->setIsEarlyClobber(); } } } else LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); return true; } void LiveVariables::HandleRegMask(const MachineOperand &MO) { // Call HandlePhysRegKill() for all live registers clobbered by Mask. // Clobbered registers are always dead, sp there is no need to use // HandlePhysRegDef(). for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) { // Skip dead regs. if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) continue; // Skip mask-preserved regs. if (!MO.clobbersPhysReg(Reg)) continue; // Kill the largest clobbered super-register. // This avoids needless implicit operands. unsigned Super = Reg; for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR)) Super = *SR; HandlePhysRegKill(Super, nullptr); } } void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, SmallVectorImpl &Defs) { // What parts of the register are previously defined? SmallSet Live; if (PhysRegDef[Reg] || PhysRegUse[Reg]) { for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) Live.insert(*SubRegs); } else { for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; // If a register isn't itself defined, but all parts that make up of it // are defined, then consider it also defined. // e.g. // AL = // AH = // = AX if (Live.count(SubReg)) continue; if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid(); ++SS) Live.insert(*SS); } } } // Start from the largest piece, find the last time any part of the register // is referenced. HandlePhysRegKill(Reg, MI); // Only some of the sub-registers are used. for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; if (!Live.count(SubReg)) // Skip if this sub-register isn't defined. continue; HandlePhysRegKill(SubReg, MI); } if (MI) Defs.push_back(Reg); // Remember this def. } void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, SmallVectorImpl &Defs) { while (!Defs.empty()) { unsigned Reg = Defs.back(); Defs.pop_back(); for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; PhysRegDef[SubReg] = MI; PhysRegUse[SubReg] = nullptr; } } } bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { MF = &mf; MRI = &mf.getRegInfo(); TRI = MF->getTarget().getRegisterInfo(); unsigned NumRegs = TRI->getNumRegs(); PhysRegDef = new MachineInstr*[NumRegs]; PhysRegUse = new MachineInstr*[NumRegs]; PHIVarInfo = new SmallVector[MF->getNumBlockIDs()]; std::fill(PhysRegDef, PhysRegDef + NumRegs, nullptr); std::fill(PhysRegUse, PhysRegUse + NumRegs, nullptr); PHIJoins.clear(); // FIXME: LiveIntervals will be updated to remove its dependence on // LiveVariables to improve compilation time and eliminate bizarre pass // dependencies. Until then, we can't change much in -O0. if (!MRI->isSSA()) report_fatal_error("regalloc=... not currently supported with -O0"); analyzePHINodes(mf); // Calculate live variable information in depth first order on the CFG of the // function. This guarantees that we will see the definition of a virtual // register before its uses due to dominance properties of SSA (except for PHI // nodes, which are treated as a special case). MachineBasicBlock *Entry = MF->begin(); SmallPtrSet Visited; for (df_ext_iterator > DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { MachineBasicBlock *MBB = *DFI; // Mark live-in registers as live-in. SmallVector Defs; for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(), EE = MBB->livein_end(); II != EE; ++II) { assert(TargetRegisterInfo::isPhysicalRegister(*II) && "Cannot have a live-in virtual register!"); HandlePhysRegDef(*II, nullptr, Defs); } // Loop over all of the instructions, processing them. DistanceMap.clear(); unsigned Dist = 0; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { MachineInstr *MI = I; if (MI->isDebugValue()) continue; DistanceMap.insert(std::make_pair(MI, Dist++)); // Process all of the operands of the instruction... unsigned NumOperandsToProcess = MI->getNumOperands(); // Unless it is a PHI node. In this case, ONLY process the DEF, not any // of the uses. They will be handled in other basic blocks. if (MI->isPHI()) NumOperandsToProcess = 1; // Clear kill and dead markers. LV will recompute them. SmallVector UseRegs; SmallVector DefRegs; SmallVector RegMasks; for (unsigned i = 0; i != NumOperandsToProcess; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegMask()) { RegMasks.push_back(i); continue; } if (!MO.isReg() || MO.getReg() == 0) continue; unsigned MOReg = MO.getReg(); if (MO.isUse()) { MO.setIsKill(false); if (MO.readsReg()) UseRegs.push_back(MOReg); } else /*MO.isDef()*/ { MO.setIsDead(false); DefRegs.push_back(MOReg); } } // Process all uses. for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { unsigned MOReg = UseRegs[i]; if (TargetRegisterInfo::isVirtualRegister(MOReg)) HandleVirtRegUse(MOReg, MBB, MI); else if (!MRI->isReserved(MOReg)) HandlePhysRegUse(MOReg, MI); } // Process all masked registers. (Call clobbers). for (unsigned i = 0, e = RegMasks.size(); i != e; ++i) HandleRegMask(MI->getOperand(RegMasks[i])); // Process all defs. for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { unsigned MOReg = DefRegs[i]; if (TargetRegisterInfo::isVirtualRegister(MOReg)) HandleVirtRegDef(MOReg, MI); else if (!MRI->isReserved(MOReg)) HandlePhysRegDef(MOReg, MI, Defs); } UpdatePhysRegDefs(MI, Defs); } // Handle any virtual assignments from PHI nodes which might be at the // bottom of this basic block. We check all of our successor blocks to see // if they have PHI nodes, and if so, we simulate an assignment at the end // of the current block. if (!PHIVarInfo[MBB->getNumber()].empty()) { SmallVectorImpl &VarInfoVec = PHIVarInfo[MBB->getNumber()]; for (SmallVectorImpl::iterator I = VarInfoVec.begin(), E = VarInfoVec.end(); I != E; ++I) // Mark it alive only in the block we are representing. MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), MBB); } // MachineCSE may CSE instructions which write to non-allocatable physical // registers across MBBs. Remember if any reserved register is liveout. SmallSet LiveOuts; for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { MachineBasicBlock *SuccMBB = *SI; if (SuccMBB->isLandingPad()) continue; for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(), LE = SuccMBB->livein_end(); LI != LE; ++LI) { unsigned LReg = *LI; if (!TRI->isInAllocatableClass(LReg)) // Ignore other live-ins, e.g. those that are live into landing pads. LiveOuts.insert(LReg); } } // Loop over PhysRegDef / PhysRegUse, killing any registers that are // available at the end of the basic block. for (unsigned i = 0; i != NumRegs; ++i) if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i)) HandlePhysRegDef(i, nullptr, Defs); std::fill(PhysRegDef, PhysRegDef + NumRegs, nullptr); std::fill(PhysRegUse, PhysRegUse + NumRegs, nullptr); } // Convert and transfer the dead / killed information we have gathered into // VirtRegInfo onto MI's. for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) { const unsigned Reg = TargetRegisterInfo::index2VirtReg(i); for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j) if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg)) VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI); else VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI); } // Check to make sure there are no unreachable blocks in the MC CFG for the // function. If so, it is due to a bug in the instruction selector or some // other part of the code generator if this happens. #ifndef NDEBUG for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) assert(Visited.count(&*i) != 0 && "unreachable basic block found"); #endif delete[] PhysRegDef; delete[] PhysRegUse; delete[] PHIVarInfo; return false; } /// replaceKillInstruction - Update register kill info by replacing a kill /// instruction with a new one. void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, MachineInstr *NewMI) { VarInfo &VI = getVarInfo(Reg); std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); } /// removeVirtualRegistersKilled - Remove all killed info for the specified /// instruction. void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isKill()) { MO.setIsKill(false); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { bool removed = getVarInfo(Reg).removeKill(MI); assert(removed && "kill not in register's VarInfo?"); (void)removed; } } } } /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the variable information of a virtual register /// which is used in a PHI node. We map that to the BB the vreg is coming from. /// void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { for (const auto &MBB : Fn) for (const auto &BBI : MBB) { if (!BBI.isPHI()) break; for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) if (BBI.getOperand(i).readsReg()) PHIVarInfo[BBI.getOperand(i + 1).getMBB()->getNumber()] .push_back(BBI.getOperand(i).getReg()); } } bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, unsigned Reg, MachineRegisterInfo &MRI) { unsigned Num = MBB.getNumber(); // Reg is live-through. if (AliveBlocks.test(Num)) return true; // Registers defined in MBB cannot be live in. const MachineInstr *Def = MRI.getVRegDef(Reg); if (Def && Def->getParent() == &MBB) return false; // Reg was not defined in MBB, was it killed here? return findKill(&MBB); } bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { LiveVariables::VarInfo &VI = getVarInfo(Reg); // Loop over all of the successors of the basic block, checking to see if // the value is either live in the block, or if it is killed in the block. SmallVector OpSuccBlocks; for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), E = MBB.succ_end(); SI != E; ++SI) { MachineBasicBlock *SuccMBB = *SI; // Is it alive in this successor? unsigned SuccIdx = SuccMBB->getNumber(); if (VI.AliveBlocks.test(SuccIdx)) return true; OpSuccBlocks.push_back(SuccMBB); } // Check to see if this value is live because there is a use in a successor // that kills it. switch (OpSuccBlocks.size()) { case 1: { MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) if (VI.Kills[i]->getParent() == SuccMBB) return true; break; } case 2: { MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) if (VI.Kills[i]->getParent() == SuccMBB1 || VI.Kills[i]->getParent() == SuccMBB2) return true; break; } default: std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), VI.Kills[i]->getParent())) return true; } return false; } /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All /// variables that are live out of DomBB will be marked as passing live through /// BB. void LiveVariables::addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB, MachineBasicBlock *SuccBB) { const unsigned NumNew = BB->getNumber(); SmallSet Defs, Kills; MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end(); for (; BBI != BBE && BBI->isPHI(); ++BBI) { // Record the def of the PHI node. Defs.insert(BBI->getOperand(0).getReg()); // All registers used by PHI nodes in SuccBB must be live through BB. for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) if (BBI->getOperand(i+1).getMBB() == BB) getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); } // Record all vreg defs and kills of all instructions in SuccBB. for (; BBI != BBE; ++BBI) { for (MachineInstr::mop_iterator I = BBI->operands_begin(), E = BBI->operands_end(); I != E; ++I) { if (I->isReg() && TargetRegisterInfo::isVirtualRegister(I->getReg())) { if (I->isDef()) Defs.insert(I->getReg()); else if (I->isKill()) Kills.insert(I->getReg()); } } } // Update info for all live variables for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); // If the Defs is defined in the successor it can't be live in BB. if (Defs.count(Reg)) continue; // If the register is either killed in or live through SuccBB it's also live // through BB. VarInfo &VI = getVarInfo(Reg); if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber())) VI.AliveBlocks.set(NumNew); } }