//===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the target-independent Mach-O writer. This file writes // out the Mach-O file in the following order: // // #1 FatHeader (universal-only) // #2 FatArch (universal-only, 1 per universal arch) // Per arch: // #3 Header // #4 Load Commands // #5 Sections // #6 Relocations // #7 Symbols // #8 Strings // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachOWriter.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/Target/TargetJITInfo.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MathExtras.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // MachOCodeEmitter Implementation //===----------------------------------------------------------------------===// namespace llvm { /// MachOCodeEmitter - This class is used by the MachOWriter to emit the code /// for functions to the Mach-O file. class MachOCodeEmitter : public MachineCodeEmitter { MachOWriter &MOW; /// MOS - The current section we're writing to MachOWriter::MachOSection *MOS; /// Relocations - These are the relocations that the function needs, as /// emitted. std::vector Relocations; /// CPLocations - This is a map of constant pool indices to offsets from the /// start of the section for that constant pool index. std::vector CPLocations; /// JTLocations - This is a map of jump table indices to offsets from the /// start of the section for that jump table index. std::vector JTLocations; /// MBBLocations - This vector is a mapping from MBB ID's to their address. /// It is filled in by the StartMachineBasicBlock callback and queried by /// the getMachineBasicBlockAddress callback. std::vector MBBLocations; public: MachOCodeEmitter(MachOWriter &mow) : MOW(mow) {} void startFunction(MachineFunction &F); bool finishFunction(MachineFunction &F); void addRelocation(const MachineRelocation &MR) { Relocations.push_back(MR); } void emitConstantPool(MachineConstantPool *MCP); void emitJumpTables(MachineJumpTableInfo *MJTI); virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const { assert(0 && "CP not implementated yet!"); return 0; } virtual intptr_t getJumpTableEntryAddress(unsigned Index) const { assert(JTLocations.size() > Index && "JT not emitted!"); return JTLocations[Index]; } virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { if (MBBLocations.size() <= (unsigned)MBB->getNumber()) MBBLocations.resize((MBB->getNumber()+1)*2); MBBLocations[MBB->getNumber()] = getCurrentPCOffset(); } virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { assert(MBBLocations.size() > (unsigned)MBB->getNumber() && MBBLocations[MBB->getNumber()] && "MBB not emitted!"); return MBBLocations[MBB->getNumber()]; } /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE! void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) { assert(0 && "JIT specific function called!"); abort(); } void *finishFunctionStub(const Function *F) { assert(0 && "JIT specific function called!"); abort(); return 0; } }; } /// startFunction - This callback is invoked when a new machine function is /// about to be emitted. void MachOCodeEmitter::startFunction(MachineFunction &F) { // Align the output buffer to the appropriate alignment, power of 2. // FIXME: GENERICIZE!! unsigned Align = 4; // Get the Mach-O Section that this function belongs in. MOS = &MOW.getTextSection(); // FIXME: better memory management MOS->SectionData.reserve(4096); BufferBegin = &(MOS->SectionData[0]); BufferEnd = BufferBegin + MOS->SectionData.capacity(); CurBufferPtr = BufferBegin + MOS->size; // Upgrade the section alignment if required. if (MOS->align < Align) MOS->align = Align; // Clear per-function data structures. CPLocations.clear(); JTLocations.clear(); MBBLocations.clear(); } /// finishFunction - This callback is invoked after the function is completely /// finished. bool MachOCodeEmitter::finishFunction(MachineFunction &F) { MOS->size += CurBufferPtr - BufferBegin; // Get a symbol for the function to add to the symbol table const GlobalValue *FuncV = F.getFunction(); MachOSym FnSym(FuncV, MOW.Mang->getValueName(FuncV), MOS->Index); // Emit constant pool to appropriate section(s) emitConstantPool(F.getConstantPool()); // Emit jump tables to appropriate section emitJumpTables(F.getJumpTableInfo()); // If we have emitted any relocations to function-specific objects such as // basic blocks, constant pools entries, or jump tables, record their // addresses now so that we can rewrite them with the correct addresses // later. for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { MachineRelocation &MR = Relocations[i]; intptr_t Addr; if (MR.isBasicBlock()) { Addr = getMachineBasicBlockAddress(MR.getBasicBlock()); MR.setResultPointer((void *)Addr); } else if (MR.isConstantPoolIndex()) { Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex()); MR.setResultPointer((void *)Addr); } else if (MR.isJumpTableIndex()) { // FIXME: handle PIC codegen Addr = getJumpTableEntryAddress(MR.getJumpTableIndex()); MR.setResultPointer((void *)Addr); } MOS->Relocations.push_back(MR); } Relocations.clear(); // Finally, add it to the symtab. MOW.SymbolTable.push_back(FnSym); return false; } /// emitConstantPool - For each constant pool entry, figure out which section /// the constant should live in, allocate space for it, and emit it to the /// Section data buffer. void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) { } /// emitJumpTables - Emit all the jump tables for a given jump table info /// record to the appropriate section. void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return; bool isPIC = MOW.TM.getRelocationModel() == Reloc::PIC_; assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!"); MachOWriter::MachOSection &Sec = MOW.getJumpTableSection(); for (unsigned i = 0, e = JT.size(); i != e; ++i) { // For each jump table, record its offset from the start of the section, // reserve space for the relocations to the MBBs, and add the relocations. const std::vector &MBBs = JT[i].MBBs; JTLocations.push_back(Sec.SectionData.size()); for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { MachineRelocation MR(MOW.GetJTRelocation(Sec.SectionData.size(), MBBs[mi])); MR.setResultPointer((void *)JTLocations[i]); Sec.Relocations.push_back(MR); MOW.outaddr(Sec.SectionData, 0); } } // FIXME: it really seems like keeping these in sync is redundant, someone // should do something about that (never access section size directly, only // look at buffer size). Sec.size = Sec.SectionData.size(); } //===----------------------------------------------------------------------===// // MachOWriter Implementation //===----------------------------------------------------------------------===// MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64; isLittleEndian = TM.getTargetData()->isLittleEndian(); // Create the machine code emitter object for this target. MCE = new MachOCodeEmitter(*this); } MachOWriter::~MachOWriter() { delete MCE; } void MachOWriter::AddSymbolToSection(MachOSection &Sec, GlobalVariable *GV) { const Type *Ty = GV->getType()->getElementType(); unsigned Size = TM.getTargetData()->getTypeSize(Ty); unsigned Align = Log2_32(TM.getTargetData()->getTypeAlignment(Ty)); MachOSym Sym(GV, Mang->getValueName(GV), Sec.Index); // Reserve space in the .bss section for this symbol while maintaining the // desired section alignment, which must be at least as much as required by // this symbol. if (Align) { Sec.align = std::max(unsigned(Sec.align), Align); Sec.size = (Sec.size + Align - 1) & ~(Align-1); } // Record the offset of the symbol, and then allocate space for it. Sym.n_value = Sec.size; Sec.size += Size; switch (GV->getLinkage()) { default: // weak/linkonce handled above assert(0 && "Unexpected linkage type!"); case GlobalValue::ExternalLinkage: Sym.n_type |= MachOSym::N_EXT; break; case GlobalValue::InternalLinkage: break; } SymbolTable.push_back(Sym); } void MachOWriter::EmitGlobal(GlobalVariable *GV) { const Type *Ty = GV->getType()->getElementType(); unsigned Size = TM.getTargetData()->getTypeSize(Ty); bool NoInit = !GV->hasInitializer(); // If this global has a zero initializer, it is part of the .bss or common // section. if (NoInit || GV->getInitializer()->isNullValue()) { // If this global is part of the common block, add it now. Variables are // part of the common block if they are zero initialized and allowed to be // merged with other symbols. if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) { MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV), MachOSym::NO_SECT); // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in // bytes of the symbol. ExtOrCommonSym.n_value = Size; // If the symbol is external, we'll put it on a list of symbols whose // addition to the symbol table is being pended until we find a reference if (NoInit) PendingSyms.push_back(ExtOrCommonSym); else SymbolTable.push_back(ExtOrCommonSym); return; } // Otherwise, this symbol is part of the .bss section. MachOSection &BSS = getBSSSection(); AddSymbolToSection(BSS, GV); return; } // Scalar read-only data goes in a literal section if the scalar is 4, 8, or // 16 bytes, or a cstring. Other read only data goes into a regular const // section. Read-write data goes in the data section. MachOSection &Sec = GV->isConstant() ? getConstSection(Ty) : getDataSection(); AddSymbolToSection(Sec, GV); // FIXME: A couple significant changes are required for this to work, even for // trivial cases such as a constant integer: // 0. InitializeMemory needs to be split out of ExecutionEngine. We don't // want to have to create an ExecutionEngine such as JIT just to write // some bytes into a buffer. The only thing necessary for // InitializeMemory to function properly should be TargetData. // // 1. InitializeMemory needs to be enhanced to return MachineRelocations // rather than accessing the address of objects such basic blocks, // constant pools, and jump tables. The client of InitializeMemory such // as an object writer or jit emitter should then handle these relocs // appropriately. // // FIXME: need to allocate memory for the global initializer. } bool MachOWriter::runOnMachineFunction(MachineFunction &MF) { // Nothing to do here, this is all done through the MCE object. return false; } bool MachOWriter::doInitialization(Module &M) { // Set the magic value, now that we know the pointer size and endianness Header.setMagic(isLittleEndian, is64Bit); // Set the file type // FIXME: this only works for object files, we do not support the creation // of dynamic libraries or executables at this time. Header.filetype = MachOHeader::MH_OBJECT; Mang = new Mangler(M); return false; } /// doFinalization - Now that the module has been completely processed, emit /// the Mach-O file to 'O'. bool MachOWriter::doFinalization(Module &M) { // FIXME: we don't handle debug info yet, we should probably do that. // Okay, the.text section has been completed, build the .data, .bss, and // "common" sections next. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) EmitGlobal(I); // Emit the symbol table to temporary buffers, so that we know the size of // the string table when we write the load commands in the next phase. BufferSymbolAndStringTable(); // Emit the header and load commands. EmitHeaderAndLoadCommands(); // Emit the various sections and their relocation info. EmitSections(); // Write the symbol table and the string table to the end of the file. O.write((char*)&SymT[0], SymT.size()); O.write((char*)&StrT[0], StrT.size()); // We are done with the abstract symbols. SectionList.clear(); SymbolTable.clear(); DynamicSymbolTable.clear(); // Release the name mangler object. delete Mang; Mang = 0; return false; } void MachOWriter::EmitHeaderAndLoadCommands() { // Step #0: Fill in the segment load command size, since we need it to figure // out the rest of the header fields MachOSegment SEG("", is64Bit); SEG.nsects = SectionList.size(); SEG.cmdsize = SEG.cmdSize(is64Bit) + SEG.nsects * SectionList.begin()->cmdSize(is64Bit); // Step #1: calculate the number of load commands. We always have at least // one, for the LC_SEGMENT load command, plus two for the normal // and dynamic symbol tables, if there are any symbols. Header.ncmds = SymbolTable.empty() ? 1 : 3; // Step #2: calculate the size of the load commands Header.sizeofcmds = SEG.cmdsize; if (!SymbolTable.empty()) Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize; // Step #3: write the header to the file // Local alias to shortenify coming code. DataBuffer &FH = Header.HeaderData; outword(FH, Header.magic); outword(FH, Header.cputype); outword(FH, Header.cpusubtype); outword(FH, Header.filetype); outword(FH, Header.ncmds); outword(FH, Header.sizeofcmds); outword(FH, Header.flags); if (is64Bit) outword(FH, Header.reserved); // Step #4: Finish filling in the segment load command and write it out for (std::list::iterator I = SectionList.begin(), E = SectionList.end(); I != E; ++I) SEG.filesize += I->size; SEG.vmsize = SEG.filesize; SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds; outword(FH, SEG.cmd); outword(FH, SEG.cmdsize); outstring(FH, SEG.segname, 16); outaddr(FH, SEG.vmaddr); outaddr(FH, SEG.vmsize); outaddr(FH, SEG.fileoff); outaddr(FH, SEG.filesize); outword(FH, SEG.maxprot); outword(FH, SEG.initprot); outword(FH, SEG.nsects); outword(FH, SEG.flags); // Step #5: Finish filling in the fields of the MachOSections uint64_t currentAddr = 0; for (std::list::iterator I = SectionList.begin(), E = SectionList.end(); I != E; ++I) { I->addr = currentAddr; I->offset = currentAddr + SEG.fileoff; // FIXME: do we need to do something with alignment here? currentAddr += I->size; } // Step #6: Calculate the number of relocations for each section and write out // the section commands for each section currentAddr += SEG.fileoff; for (std::list::iterator I = SectionList.begin(), E = SectionList.end(); I != E; ++I) { // calculate the relocation info for this section command CalculateRelocations(*I, currentAddr); currentAddr += I->nreloc * 8; // write the finalized section command to the output buffer outstring(FH, I->sectname, 16); outstring(FH, I->segname, 16); outaddr(FH, I->addr); outaddr(FH, I->size); outword(FH, I->offset); outword(FH, I->align); outword(FH, I->reloff); outword(FH, I->nreloc); outword(FH, I->flags); outword(FH, I->reserved1); outword(FH, I->reserved2); if (is64Bit) outword(FH, I->reserved3); } // Step #7: Emit LC_SYMTAB/LC_DYSYMTAB load commands // FIXME: add size of relocs SymTab.symoff = currentAddr; SymTab.nsyms = SymbolTable.size(); SymTab.stroff = SymTab.symoff + SymT.size(); SymTab.strsize = StrT.size(); outword(FH, SymTab.cmd); outword(FH, SymTab.cmdsize); outword(FH, SymTab.symoff); outword(FH, SymTab.nsyms); outword(FH, SymTab.stroff); outword(FH, SymTab.strsize); // FIXME: set DySymTab fields appropriately // We should probably just update these in BufferSymbolAndStringTable since // thats where we're partitioning up the different kinds of symbols. outword(FH, DySymTab.cmd); outword(FH, DySymTab.cmdsize); outword(FH, DySymTab.ilocalsym); outword(FH, DySymTab.nlocalsym); outword(FH, DySymTab.iextdefsym); outword(FH, DySymTab.nextdefsym); outword(FH, DySymTab.iundefsym); outword(FH, DySymTab.nundefsym); outword(FH, DySymTab.tocoff); outword(FH, DySymTab.ntoc); outword(FH, DySymTab.modtaboff); outword(FH, DySymTab.nmodtab); outword(FH, DySymTab.extrefsymoff); outword(FH, DySymTab.nextrefsyms); outword(FH, DySymTab.indirectsymoff); outword(FH, DySymTab.nindirectsyms); outword(FH, DySymTab.extreloff); outword(FH, DySymTab.nextrel); outword(FH, DySymTab.locreloff); outword(FH, DySymTab.nlocrel); O.write((char*)&FH[0], FH.size()); } /// EmitSections - Now that we have constructed the file header and load /// commands, emit the data for each section to the file. void MachOWriter::EmitSections() { for (std::list::iterator I = SectionList.begin(), E = SectionList.end(); I != E; ++I) // Emit the contents of each section O.write((char*)&I->SectionData[0], I->size); for (std::list::iterator I = SectionList.begin(), E = SectionList.end(); I != E; ++I) // Emit the relocation entry data for each section. O.write((char*)&I->RelocBuffer[0], I->RelocBuffer.size()); } /// PartitionByLocal - Simple boolean predicate that returns true if Sym is /// a local symbol rather than an external symbol. bool MachOWriter::PartitionByLocal(const MachOSym &Sym) { // FIXME: Not totally sure if private extern counts as external return (Sym.n_type & (MachOSym::N_EXT | MachOSym::N_PEXT)) == 0; } /// PartitionByDefined - Simple boolean predicate that returns true if Sym is /// defined in this module. bool MachOWriter::PartitionByDefined(const MachOSym &Sym) { // FIXME: Do N_ABS or N_INDR count as defined? return (Sym.n_type & MachOSym::N_SECT) == MachOSym::N_SECT; } /// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them /// each a string table index so that they appear in the correct order in the /// output file. void MachOWriter::BufferSymbolAndStringTable() { // The order of the symbol table is: // 1. local symbols // 2. defined external symbols (sorted by name) // 3. undefined external symbols (sorted by name) // Sort the symbols by name, so that when we partition the symbols by scope // of definition, we won't have to sort by name within each partition. std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSymCmp()); // Parition the symbol table entries so that all local symbols come before // all symbols with external linkage. { 1 | 2 3 } std::partition(SymbolTable.begin(), SymbolTable.end(), PartitionByLocal); // Advance iterator to beginning of external symbols and partition so that // all external symbols defined in this module come before all external // symbols defined elsewhere. { 1 | 2 | 3 } for (std::vector::iterator I = SymbolTable.begin(), E = SymbolTable.end(); I != E; ++I) { if (!PartitionByLocal(*I)) { std::partition(I, E, PartitionByDefined); break; } } // Write out a leading zero byte when emitting string table, for n_strx == 0 // which means an empty string. outbyte(StrT, 0); // The order of the string table is: // 1. strings for external symbols // 2. strings for local symbols // Since this is the opposite order from the symbol table, which we have just // sorted, we can walk the symbol table backwards to output the string table. for (std::vector::reverse_iterator I = SymbolTable.rbegin(), E = SymbolTable.rend(); I != E; ++I) { if (I->GVName == "") { I->n_strx = 0; } else { I->n_strx = StrT.size(); outstring(StrT, I->GVName, I->GVName.length()+1); } } for (std::vector::iterator I = SymbolTable.begin(), E = SymbolTable.end(); I != E; ++I) { // Emit nlist to buffer outword(SymT, I->n_strx); outbyte(SymT, I->n_type); outbyte(SymT, I->n_sect); outhalf(SymT, I->n_desc); outaddr(SymT, I->n_value); } } /// CalculateRelocations - For each MachineRelocation in the current section, /// calculate the index of the section containing the object to be relocated, /// and the offset into that section. From this information, create the /// appropriate target-specific MachORelocation type and add buffer it to be /// written out after we are finished writing out sections. void MachOWriter::CalculateRelocations(MachOSection &MOS, unsigned RelOffset) { for (unsigned i = 0, e = MOS.Relocations.size(); i != e; ++i) { // FIXME: calculate the correct offset and section index for relocated // object. // FIXME: somehow convey the fact that the relocation might be external // to the relocating code. GetTargetRelocation(MOS.Relocations[i], MOS, MOS.Index); } if (MOS.nreloc != 0) MOS.reloff = RelOffset; } MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect) : GV(gv), GVName(name), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect), n_desc(0), n_value(0) { // FIXME: take a target machine, and then add the appropriate prefix for // the linkage type based on the TargetAsmInfo switch (GV->getLinkage()) { default: assert(0 && "Unexpected linkage type!"); break; case GlobalValue::WeakLinkage: case GlobalValue::LinkOnceLinkage: assert(!isa(gv) && "Unexpected linkage type for Function!"); case GlobalValue::ExternalLinkage: n_type |= N_EXT; break; case GlobalValue::InternalLinkage: break; } }