//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements basic block placement transformations using the CFG // structure and branch probability estimates. // // The pass strives to preserve the structure of the CFG (that is, retain // a topological ordering of basic blocks) in the absense of a *strong* signal // to the contrary from probabilities. However, within the CFG structure, it // attempts to choose an ordering which favors placing more likely sequences of // blocks adjacent to each other. // // The algorithm works from the inner-most loop within a function outward, and // at each stage walks through the basic blocks, trying to coalesce them into // sequential chains where allowed by the CFG (or demanded by heavy // probabilities). Finally, it walks the blocks in topological order, and the // first time it reaches a chain of basic blocks, it schedules them in the // function in-order. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "block-placement2" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include using namespace llvm; STATISTIC(NumCondBranches, "Number of conditional branches"); STATISTIC(NumUncondBranches, "Number of uncondittional branches"); STATISTIC(CondBranchTakenFreq, "Potential frequency of taking conditional branches"); STATISTIC(UncondBranchTakenFreq, "Potential frequency of taking unconditional branches"); namespace { class BlockChain; /// \brief Type for our function-wide basic block -> block chain mapping. typedef DenseMap BlockToChainMapType; } namespace { /// \brief A chain of blocks which will be laid out contiguously. /// /// This is the datastructure representing a chain of consecutive blocks that /// are profitable to layout together in order to maximize fallthrough /// probabilities. We also can use a block chain to represent a sequence of /// basic blocks which have some external (correctness) requirement for /// sequential layout. /// /// Eventually, the block chains will form a directed graph over the function. /// We provide an SCC-supporting-iterator in order to quicky build and walk the /// SCCs of block chains within a function. /// /// The block chains also have support for calculating and caching probability /// information related to the chain itself versus other chains. This is used /// for ranking during the final layout of block chains. class BlockChain { /// \brief The sequence of blocks belonging to this chain. /// /// This is the sequence of blocks for a particular chain. These will be laid /// out in-order within the function. SmallVector Blocks; /// \brief A handle to the function-wide basic block to block chain mapping. /// /// This is retained in each block chain to simplify the computation of child /// block chains for SCC-formation and iteration. We store the edges to child /// basic blocks, and map them back to their associated chains using this /// structure. BlockToChainMapType &BlockToChain; public: /// \brief Construct a new BlockChain. /// /// This builds a new block chain representing a single basic block in the /// function. It also registers itself as the chain that block participates /// in with the BlockToChain mapping. BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { assert(BB && "Cannot create a chain with a null basic block"); BlockToChain[BB] = this; } /// \brief Iterator over blocks within the chain. typedef SmallVectorImpl::const_iterator iterator; /// \brief Beginning of blocks within the chain. iterator begin() const { return Blocks.begin(); } /// \brief End of blocks within the chain. iterator end() const { return Blocks.end(); } /// \brief Merge a block chain into this one. /// /// This routine merges a block chain into this one. It takes care of forming /// a contiguous sequence of basic blocks, updating the edge list, and /// updating the block -> chain mapping. It does not free or tear down the /// old chain, but the old chain's block list is no longer valid. void merge(MachineBasicBlock *BB, BlockChain *Chain) { assert(BB); assert(!Blocks.empty()); // Fast path in case we don't have a chain already. if (!Chain) { assert(!BlockToChain[BB]); Blocks.push_back(BB); BlockToChain[BB] = this; return; } assert(BB == *Chain->begin()); assert(Chain->begin() != Chain->end()); // Update the incoming blocks to point to this chain, and add them to the // chain structure. for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); BI != BE; ++BI) { Blocks.push_back(*BI); assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); BlockToChain[*BI] = this; } } /// \brief Count of predecessors within the loop currently being processed. /// /// This count is updated at each loop we process to represent the number of /// in-loop predecessors of this chain. unsigned LoopPredecessors; }; } namespace { class MachineBlockPlacement : public MachineFunctionPass { /// \brief A typedef for a block filter set. typedef SmallPtrSet BlockFilterSet; /// \brief A handle to the branch probability pass. const MachineBranchProbabilityInfo *MBPI; /// \brief A handle to the function-wide block frequency pass. const MachineBlockFrequencyInfo *MBFI; /// \brief A handle to the loop info. const MachineLoopInfo *MLI; /// \brief A handle to the target's instruction info. const TargetInstrInfo *TII; /// \brief A handle to the target's lowering info. const TargetLowering *TLI; /// \brief Allocator and owner of BlockChain structures. /// /// We build BlockChains lazily by merging together high probability BB /// sequences acording to the "Algo2" in the paper mentioned at the top of /// the file. To reduce malloc traffic, we allocate them using this slab-like /// allocator, and destroy them after the pass completes. SpecificBumpPtrAllocator ChainAllocator; /// \brief Function wide BasicBlock to BlockChain mapping. /// /// This mapping allows efficiently moving from any given basic block to the /// BlockChain it participates in, if any. We use it to, among other things, /// allow implicitly defining edges between chains as the existing edges /// between basic blocks. DenseMap BlockToChain; void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, SmallVectorImpl &BlockWorkList, const BlockFilterSet *BlockFilter = 0); MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter); MachineBasicBlock *selectBestCandidateBlock( BlockChain &Chain, SmallVectorImpl &WorkList, const BlockFilterSet *BlockFilter); MachineBasicBlock *getFirstUnplacedBlock( MachineFunction &F, const BlockChain &PlacedChain, MachineFunction::iterator &PrevUnplacedBlockIt, const BlockFilterSet *BlockFilter); void buildChain(MachineBasicBlock *BB, BlockChain &Chain, SmallVectorImpl &BlockWorkList, const BlockFilterSet *BlockFilter = 0); MachineBasicBlock *findBestLoopTop(MachineFunction &F, MachineLoop &L, const BlockFilterSet &LoopBlockSet); void buildLoopChains(MachineFunction &F, MachineLoop &L); void buildCFGChains(MachineFunction &F); void AlignLoops(MachineFunction &F); public: static char ID; // Pass identification, replacement for typeid MachineBlockPlacement() : MachineFunctionPass(ID) { initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &F); void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } const char *getPassName() const { return "Block Placement"; } }; } char MachineBlockPlacement::ID = 0; INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", "Branch Probability Basic Block Placement", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", "Branch Probability Basic Block Placement", false, false) FunctionPass *llvm::createMachineBlockPlacementPass() { return new MachineBlockPlacement(); } #ifndef NDEBUG /// \brief Helper to print the name of a MBB. /// /// Only used by debug logging. static std::string getBlockName(MachineBasicBlock *BB) { std::string Result; raw_string_ostream OS(Result); OS << "BB#" << BB->getNumber() << " (derived from LLVM BB '" << BB->getName() << "')"; OS.flush(); return Result; } /// \brief Helper to print the number of a MBB. /// /// Only used by debug logging. static std::string getBlockNum(MachineBasicBlock *BB) { std::string Result; raw_string_ostream OS(Result); OS << "BB#" << BB->getNumber(); OS.flush(); return Result; } #endif /// \brief Mark a chain's successors as having one fewer preds. /// /// When a chain is being merged into the "placed" chain, this routine will /// quickly walk the successors of each block in the chain and mark them as /// having one fewer active predecessor. It also adds any successors of this /// chain which reach the zero-predecessor state to the worklist passed in. void MachineBlockPlacement::markChainSuccessors( BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, SmallVectorImpl &BlockWorkList, const BlockFilterSet *BlockFilter) { // Walk all the blocks in this chain, marking their successors as having // a predecessor placed. for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); CBI != CBE; ++CBI) { // Add any successors for which this is the only un-placed in-loop // predecessor to the worklist as a viable candidate for CFG-neutral // placement. No subsequent placement of this block will violate the CFG // shape, so we get to use heuristics to choose a favorable placement. for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), SE = (*CBI)->succ_end(); SI != SE; ++SI) { if (BlockFilter && !BlockFilter->count(*SI)) continue; BlockChain &SuccChain = *BlockToChain[*SI]; // Disregard edges within a fixed chain, or edges to the loop header. if (&Chain == &SuccChain || *SI == LoopHeaderBB) continue; // This is a cross-chain edge that is within the loop, so decrement the // loop predecessor count of the destination chain. if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) BlockWorkList.push_back(*SuccChain.begin()); } } } /// \brief Select the best successor for a block. /// /// This looks across all successors of a particular block and attempts to /// select the "best" one to be the layout successor. It only considers direct /// successors which also pass the block filter. It will attempt to avoid /// breaking CFG structure, but cave and break such structures in the case of /// very hot successor edges. /// /// \returns The best successor block found, or null if none are viable. MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter) { const BranchProbability HotProb(4, 5); // 80% MachineBasicBlock *BestSucc = 0; // FIXME: Due to the performance of the probability and weight routines in // the MBPI analysis, we manually compute probabilities using the edge // weights. This is suboptimal as it means that the somewhat subtle // definition of edge weight semantics is encoded here as well. We should // improve the MBPI interface to effeciently support query patterns such as // this. uint32_t BestWeight = 0; uint32_t WeightScale = 0; uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) { if (BlockFilter && !BlockFilter->count(*SI)) continue; BlockChain &SuccChain = *BlockToChain[*SI]; if (&SuccChain == &Chain) { DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); continue; } if (*SI != *SuccChain.begin()) { DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); continue; } uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); // Only consider successors which are either "hot", or wouldn't violate // any CFG constraints. if (SuccChain.LoopPredecessors != 0) { if (SuccProb < HotProb) { DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n"); continue; } // Make sure that a hot successor doesn't have a globally more important // predecessor. BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); bool BadCFGConflict = false; for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), PE = (*SI)->pred_end(); PI != PE; ++PI) { if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || BlockToChain[*PI] == &Chain) continue; BlockFrequency PredEdgeFreq = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); if (PredEdgeFreq >= CandidateEdgeFreq) { BadCFGConflict = true; break; } } if (BadCFGConflict) { DEBUG(dbgs() << " " << getBlockName(*SI) << " -> non-cold CFG conflict\n"); continue; } } DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb << " (prob)" << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") << "\n"); if (BestSucc && BestWeight >= SuccWeight) continue; BestSucc = *SI; BestWeight = SuccWeight; } return BestSucc; } namespace { /// \brief Predicate struct to detect blocks already placed. class IsBlockPlaced { const BlockChain &PlacedChain; const BlockToChainMapType &BlockToChain; public: IsBlockPlaced(const BlockChain &PlacedChain, const BlockToChainMapType &BlockToChain) : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {} bool operator()(MachineBasicBlock *BB) const { return BlockToChain.lookup(BB) == &PlacedChain; } }; } /// \brief Select the best block from a worklist. /// /// This looks through the provided worklist as a list of candidate basic /// blocks and select the most profitable one to place. The definition of /// profitable only really makes sense in the context of a loop. This returns /// the most frequently visited block in the worklist, which in the case of /// a loop, is the one most desirable to be physically close to the rest of the /// loop body in order to improve icache behavior. /// /// \returns The best block found, or null if none are viable. MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( BlockChain &Chain, SmallVectorImpl &WorkList, const BlockFilterSet *BlockFilter) { // Once we need to walk the worklist looking for a candidate, cleanup the // worklist of already placed entries. // FIXME: If this shows up on profiles, it could be folded (at the cost of // some code complexity) into the loop below. WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), IsBlockPlaced(Chain, BlockToChain)), WorkList.end()); MachineBasicBlock *BestBlock = 0; BlockFrequency BestFreq; for (SmallVectorImpl::iterator WBI = WorkList.begin(), WBE = WorkList.end(); WBI != WBE; ++WBI) { assert(!BlockFilter || BlockFilter->count(*WBI)); BlockChain &SuccChain = *BlockToChain[*WBI]; if (&SuccChain == &Chain) { DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> Already merged!\n"); continue; } assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq << " (freq)\n"); if (BestBlock && BestFreq >= CandidateFreq) continue; BestBlock = *WBI; BestFreq = CandidateFreq; } return BestBlock; } /// \brief Retrieve the first unplaced basic block. /// /// This routine is called when we are unable to use the CFG to walk through /// all of the basic blocks and form a chain due to unnatural loops in the CFG. /// We walk through the function's blocks in order, starting from the /// LastUnplacedBlockIt. We update this iterator on each call to avoid /// re-scanning the entire sequence on repeated calls to this routine. MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( MachineFunction &F, const BlockChain &PlacedChain, MachineFunction::iterator &PrevUnplacedBlockIt, const BlockFilterSet *BlockFilter) { for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; ++I) { if (BlockFilter && !BlockFilter->count(I)) continue; if (BlockToChain[I] != &PlacedChain) { PrevUnplacedBlockIt = I; // Now select the head of the chain to which the unplaced block belongs // as the block to place. This will force the entire chain to be placed, // and satisfies the requirements of merging chains. return *BlockToChain[I]->begin(); } } return 0; } void MachineBlockPlacement::buildChain( MachineBasicBlock *BB, BlockChain &Chain, SmallVectorImpl &BlockWorkList, const BlockFilterSet *BlockFilter) { assert(BB); assert(BlockToChain[BB] == &Chain); MachineFunction &F = *BB->getParent(); MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); MachineBasicBlock *LoopHeaderBB = BB; markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); BB = *llvm::prior(Chain.end()); for (;;) { assert(BB); assert(BlockToChain[BB] == &Chain); assert(*llvm::prior(Chain.end()) == BB); MachineBasicBlock *BestSucc = 0; // Look for the best viable successor if there is one to place immediately // after this block. BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); // If an immediate successor isn't available, look for the best viable // block among those we've identified as not violating the loop's CFG at // this point. This won't be a fallthrough, but it will increase locality. if (!BestSucc) BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); if (!BestSucc) { BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); if (!BestSucc) break; DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " "layout successor until the CFG reduces\n"); } // Place this block, updating the datastructures to reflect its placement. BlockChain &SuccChain = *BlockToChain[BestSucc]; // Zero out LoopPredecessors for the successor we're about to merge in case // we selected a successor that didn't fit naturally into the CFG. SuccChain.LoopPredecessors = 0; DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to " << getBlockNum(BestSucc) << "\n"); markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); Chain.merge(BestSucc, &SuccChain); BB = *llvm::prior(Chain.end()); } DEBUG(dbgs() << "Finished forming chain for header block " << getBlockNum(*Chain.begin()) << "\n"); } /// \brief Find the best loop top block for layout. /// /// This routine implements the logic to analyze the loop looking for the best /// block to layout at the top of the loop. Typically this is done to maximize /// fallthrough opportunities. MachineBasicBlock * MachineBlockPlacement::findBestLoopTop(MachineFunction &F, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { BlockFrequency BestExitEdgeFreq; MachineBasicBlock *ExitingBB = 0; MachineBasicBlock *LoopingBB = 0; // If there are exits to outer loops, loop rotation can severely limit // fallthrough opportunites unless it selects such an exit. Keep a set of // blocks where rotating to exit with that block will reach an outer loop. SmallPtrSet BlocksExitingToOuterLoop; DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) << "\n"); for (MachineLoop::block_iterator I = L.block_begin(), E = L.block_end(); I != E; ++I) { BlockChain &Chain = *BlockToChain[*I]; // Ensure that this block is at the end of a chain; otherwise it could be // mid-way through an inner loop or a successor of an analyzable branch. if (*I != *llvm::prior(Chain.end())) continue; // Now walk the successors. We need to establish whether this has a viable // exiting successor and whether it has a viable non-exiting successor. // We store the old exiting state and restore it if a viable looping // successor isn't found. MachineBasicBlock *OldExitingBB = ExitingBB; BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; // We also compute and store the best looping successor for use in layout. MachineBasicBlock *BestLoopSucc = 0; // FIXME: Due to the performance of the probability and weight routines in // the MBPI analysis, we use the internal weights. This is only valid // because it is purely a ranking function, we don't care about anything // but the relative values. uint32_t BestLoopSuccWeight = 0; // FIXME: We also manually compute the probabilities to avoid quadratic // behavior. uint32_t WeightScale = 0; uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), SE = (*I)->succ_end(); SI != SE; ++SI) { if ((*SI)->isLandingPad()) continue; if (*SI == *I) continue; BlockChain &SuccChain = *BlockToChain[*SI]; // Don't split chains, either this chain or the successor's chain. if (&Chain == &SuccChain || *SI != *SuccChain.begin()) { DEBUG(dbgs() << " " << (LoopBlockSet.count(*SI) ? "looping: " : "exiting: ") << getBlockName(*I) << " -> " << getBlockName(*SI) << " (chain conflict)\n"); continue; } uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); if (LoopBlockSet.count(*SI)) { DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " << getBlockName(*SI) << " (" << SuccWeight << ")\n"); if (BestLoopSucc && BestLoopSuccWeight >= SuccWeight) continue; BestLoopSucc = *SI; BestLoopSuccWeight = SuccWeight; continue; } BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " << getBlockName(*SI) << " (" << ExitEdgeFreq << ")\n"); // Note that we slightly bias this toward an existing layout successor to // retain incoming order in the absence of better information. // FIXME: Should we bias this more strongly? It's pretty weak. if (!ExitingBB || ExitEdgeFreq > BestExitEdgeFreq || ((*I)->isLayoutSuccessor(*SI) && !(ExitEdgeFreq < BestExitEdgeFreq))) { BestExitEdgeFreq = ExitEdgeFreq; ExitingBB = *I; } if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) if (ExitLoop->contains(&L)) BlocksExitingToOuterLoop.insert(*I); } // Restore the old exiting state, no viable looping successor was found. if (!BestLoopSucc) { ExitingBB = OldExitingBB; BestExitEdgeFreq = OldBestExitEdgeFreq; continue; } // If this was best exiting block thus far, also record the looping block. if (ExitingBB == *I) LoopingBB = BestLoopSucc; } // Without a candidate exitting block or with only a single block in the // loop, just use the loop header to layout the loop. if (!ExitingBB || L.getNumBlocks() == 1) return L.getHeader(); // Also, if we have exit blocks which lead to outer loops but didn't select // one of them as the exiting block we are rotating toward, disable loop // rotation altogether. if (!BlocksExitingToOuterLoop.empty() && !BlocksExitingToOuterLoop.count(ExitingBB)) return L.getHeader(); assert(LoopingBB && "All successors of a loop block are exit blocks!"); DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); DEBUG(dbgs() << " Best top block: " << getBlockName(LoopingBB) << "\n"); return LoopingBB; } /// \brief Forms basic block chains from the natural loop structures. /// /// These chains are designed to preserve the existing *structure* of the code /// as much as possible. We can then stitch the chains together in a way which /// both preserves the topological structure and minimizes taken conditional /// branches. void MachineBlockPlacement::buildLoopChains(MachineFunction &F, MachineLoop &L) { // First recurse through any nested loops, building chains for those inner // loops. for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) buildLoopChains(F, **LI); SmallVector BlockWorkList; BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); MachineBasicBlock *LayoutTop = findBestLoopTop(F, L, LoopBlockSet); BlockChain &LoopChain = *BlockToChain[LayoutTop]; // FIXME: This is a really lame way of walking the chains in the loop: we // walk the blocks, and use a set to prevent visiting a particular chain // twice. SmallPtrSet UpdatedPreds; assert(LoopChain.LoopPredecessors == 0); UpdatedPreds.insert(&LoopChain); for (MachineLoop::block_iterator BI = L.block_begin(), BE = L.block_end(); BI != BE; ++BI) { BlockChain &Chain = *BlockToChain[*BI]; if (!UpdatedPreds.insert(&Chain)) continue; assert(Chain.LoopPredecessors == 0); for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); BCI != BCE; ++BCI) { assert(BlockToChain[*BCI] == &Chain); for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), PE = (*BCI)->pred_end(); PI != PE; ++PI) { if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) continue; ++Chain.LoopPredecessors; } } if (Chain.LoopPredecessors == 0) BlockWorkList.push_back(*Chain.begin()); } buildChain(LayoutTop, LoopChain, BlockWorkList, &LoopBlockSet); DEBUG({ // Crash at the end so we get all of the debugging output first. bool BadLoop = false; if (LoopChain.LoopPredecessors) { BadLoop = true; dbgs() << "Loop chain contains a block without its preds placed!\n" << " Loop header: " << getBlockName(*L.block_begin()) << "\n" << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; } for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); BCI != BCE; ++BCI) if (!LoopBlockSet.erase(*BCI)) { // We don't mark the loop as bad here because there are real situations // where this can occur. For example, with an unanalyzable fallthrough // from a loop block to a non-loop block or vice versa. dbgs() << "Loop chain contains a block not contained by the loop!\n" << " Loop header: " << getBlockName(*L.block_begin()) << "\n" << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" << " Bad block: " << getBlockName(*BCI) << "\n"; } if (!LoopBlockSet.empty()) { BadLoop = true; for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), LBE = LoopBlockSet.end(); LBI != LBE; ++LBI) dbgs() << "Loop contains blocks never placed into a chain!\n" << " Loop header: " << getBlockName(*L.block_begin()) << "\n" << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" << " Bad block: " << getBlockName(*LBI) << "\n"; } assert(!BadLoop && "Detected problems with the placement of this loop."); }); } void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { // Ensure that every BB in the function has an associated chain to simplify // the assumptions of the remaining algorithm. SmallVector Cond; // For AnalyzeBranch. for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { MachineBasicBlock *BB = FI; BlockChain *Chain = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); // Also, merge any blocks which we cannot reason about and must preserve // the exact fallthrough behavior for. for (;;) { Cond.clear(); MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) break; MachineFunction::iterator NextFI(llvm::next(FI)); MachineBasicBlock *NextBB = NextFI; // Ensure that the layout successor is a viable block, as we know that // fallthrough is a possibility. assert(NextFI != FE && "Can't fallthrough past the last block."); DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " << getBlockName(BB) << " -> " << getBlockName(NextBB) << "\n"); Chain->merge(NextBB, 0); FI = NextFI; BB = NextBB; } } // Build any loop-based chains. for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; ++LI) buildLoopChains(F, **LI); SmallVector BlockWorkList; SmallPtrSet UpdatedPreds; for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { MachineBasicBlock *BB = &*FI; BlockChain &Chain = *BlockToChain[BB]; if (!UpdatedPreds.insert(&Chain)) continue; assert(Chain.LoopPredecessors == 0); for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); BCI != BCE; ++BCI) { assert(BlockToChain[*BCI] == &Chain); for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), PE = (*BCI)->pred_end(); PI != PE; ++PI) { if (BlockToChain[*PI] == &Chain) continue; ++Chain.LoopPredecessors; } } if (Chain.LoopPredecessors == 0) BlockWorkList.push_back(*Chain.begin()); } BlockChain &FunctionChain = *BlockToChain[&F.front()]; buildChain(&F.front(), FunctionChain, BlockWorkList); typedef SmallPtrSet FunctionBlockSetType; DEBUG({ // Crash at the end so we get all of the debugging output first. bool BadFunc = false; FunctionBlockSetType FunctionBlockSet; for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) FunctionBlockSet.insert(FI); for (BlockChain::iterator BCI = FunctionChain.begin(), BCE = FunctionChain.end(); BCI != BCE; ++BCI) if (!FunctionBlockSet.erase(*BCI)) { BadFunc = true; dbgs() << "Function chain contains a block not in the function!\n" << " Bad block: " << getBlockName(*BCI) << "\n"; } if (!FunctionBlockSet.empty()) { BadFunc = true; for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), FBE = FunctionBlockSet.end(); FBI != FBE; ++FBI) dbgs() << "Function contains blocks never placed into a chain!\n" << " Bad block: " << getBlockName(*FBI) << "\n"; } assert(!BadFunc && "Detected problems with the block placement."); }); // Splice the blocks into place. MachineFunction::iterator InsertPos = F.begin(); for (BlockChain::iterator BI = FunctionChain.begin(), BE = FunctionChain.end(); BI != BE; ++BI) { DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " : " ... ") << getBlockName(*BI) << "\n"); if (InsertPos != MachineFunction::iterator(*BI)) F.splice(InsertPos, *BI); else ++InsertPos; // Update the terminator of the previous block. if (BI == FunctionChain.begin()) continue; MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI)); // FIXME: It would be awesome of updateTerminator would just return rather // than assert when the branch cannot be analyzed in order to remove this // boiler plate. Cond.clear(); MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) PrevBB->updateTerminator(); } // Fixup the last block. Cond.clear(); MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) F.back().updateTerminator(); } /// \brief Recursive helper to align a loop and any nested loops. static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) { // Recurse through nested loops. for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) AlignLoop(F, *I, Align); L->getTopBlock()->setAlignment(Align); } /// \brief Align loop headers to target preferred alignments. void MachineBlockPlacement::AlignLoops(MachineFunction &F) { if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) return; unsigned Align = TLI->getPrefLoopAlignment(); if (!Align) return; // Don't care about loop alignment. for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) AlignLoop(F, *I, Align); } bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { // Check for single-block functions and skip them. if (llvm::next(F.begin()) == F.end()) return false; MBPI = &getAnalysis(); MBFI = &getAnalysis(); MLI = &getAnalysis(); TII = F.getTarget().getInstrInfo(); TLI = F.getTarget().getTargetLowering(); assert(BlockToChain.empty()); buildCFGChains(F); AlignLoops(F); BlockToChain.clear(); ChainAllocator.DestroyAll(); // We always return true as we have no way to track whether the final order // differs from the original order. return true; } namespace { /// \brief A pass to compute block placement statistics. /// /// A separate pass to compute interesting statistics for evaluating block /// placement. This is separate from the actual placement pass so that they can /// be computed in the absense of any placement transformations or when using /// alternative placement strategies. class MachineBlockPlacementStats : public MachineFunctionPass { /// \brief A handle to the branch probability pass. const MachineBranchProbabilityInfo *MBPI; /// \brief A handle to the function-wide block frequency pass. const MachineBlockFrequencyInfo *MBFI; public: static char ID; // Pass identification, replacement for typeid MachineBlockPlacementStats() : MachineFunctionPass(ID) { initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &F); void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } const char *getPassName() const { return "Block Placement Stats"; } }; } char MachineBlockPlacementStats::ID = 0; INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", "Basic Block Placement Stats", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", "Basic Block Placement Stats", false, false) FunctionPass *llvm::createMachineBlockPlacementStatsPass() { return new MachineBlockPlacementStats(); } bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { // Check for single-block functions and skip them. if (llvm::next(F.begin()) == F.end()) return false; MBPI = &getAnalysis(); MBFI = &getAnalysis(); for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { BlockFrequency BlockFreq = MBFI->getBlockFreq(I); Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches : NumUncondBranches; Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), SE = I->succ_end(); SI != SE; ++SI) { // Skip if this successor is a fallthrough. if (I->isLayoutSuccessor(*SI)) continue; BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); ++NumBranches; BranchTakenFreq += EdgeFreq.getFrequency(); } } return false; }