//===-- MachineFunction.cpp -----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect native machine code information for a function. This allows // target-specific information about the generated code to be stored with each // function. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Config/config.h" #include #include #include using namespace llvm; static AnnotationID MF_AID( AnnotationManager::getID("CodeGen::MachineCodeForFunction")); namespace { struct Printer : public MachineFunctionPass { std::ostream *OS; const std::string Banner; Printer (std::ostream *_OS, const std::string &_Banner) : OS (_OS), Banner (_Banner) { } const char *getPassName() const { return "MachineFunction Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } bool runOnMachineFunction(MachineFunction &MF) { (*OS) << Banner; MF.print (*OS); return false; } }; } /// Returns a newly-created MachineFunction Printer pass. The default output /// stream is std::cerr; the default banner is empty. /// FunctionPass *llvm::createMachineFunctionPrinterPass(std::ostream *OS, const std::string &Banner){ return new Printer(OS, Banner); } namespace { struct Deleter : public MachineFunctionPass { const char *getPassName() const { return "Machine Code Deleter"; } bool runOnMachineFunction(MachineFunction &MF) { // Delete the annotation from the function now. MachineFunction::destruct(MF.getFunction()); return true; } }; } /// MachineCodeDeletion Pass - This pass deletes all of the machine code for /// the current function, which should happen after the function has been /// emitted to a .s file or to memory. FunctionPass *llvm::createMachineCodeDeleter() { return new Deleter(); } //===---------------------------------------------------------------------===// // MachineFunction implementation //===---------------------------------------------------------------------===// MachineBasicBlock* ilist_traits::createSentinel() { MachineBasicBlock* dummy = new MachineBasicBlock(); LeakDetector::removeGarbageObject(dummy); return dummy; } void ilist_traits::transferNodesFromList( iplist >& toList, ilist_iterator first, ilist_iterator last) { if (Parent != toList.Parent) for (; first != last; ++first) first->Parent = toList.Parent; } MachineFunction::MachineFunction(const Function *F, const TargetMachine &TM) : Annotation(MF_AID), Fn(F), Target(TM), UsedPhysRegs(0) { SSARegMapping = new SSARegMap(); MFInfo = 0; FrameInfo = new MachineFrameInfo(); ConstantPool = new MachineConstantPool(TM.getTargetData()); JumpTableInfo = new MachineJumpTableInfo(TM.getTargetData()); BasicBlocks.Parent = this; } MachineFunction::~MachineFunction() { BasicBlocks.clear(); delete SSARegMapping; delete MFInfo; delete FrameInfo; delete ConstantPool; delete JumpTableInfo; delete[] UsedPhysRegs; } void MachineFunction::dump() const { print(std::cerr); } void MachineFunction::print(std::ostream &OS) const { OS << "# Machine code for " << Fn->getName () << "():\n"; // Print Frame Information getFrameInfo()->print(*this, OS); // Print JumpTable Information getJumpTableInfo()->print(OS); // Print Constant Pool getConstantPool()->print(OS); const MRegisterInfo *MRI = getTarget().getRegisterInfo(); if (livein_begin() != livein_end()) { OS << "Live Ins:"; for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) { if (MRI) OS << " " << MRI->getName(I->first); else OS << " Reg #" << I->first; if (I->second) OS << " in VR#" << I->second << " "; } OS << "\n"; } if (liveout_begin() != liveout_end()) { OS << "Live Outs:"; for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I) if (MRI) OS << " " << MRI->getName(*I); else OS << " Reg #" << *I; OS << "\n"; } for (const_iterator BB = begin(); BB != end(); ++BB) BB->print(OS); OS << "\n# End machine code for " << Fn->getName () << "().\n\n"; } /// CFGOnly flag - This is used to control whether or not the CFG graph printer /// prints out the contents of basic blocks or not. This is acceptable because /// this code is only really used for debugging purposes. /// static bool CFGOnly = false; namespace llvm { template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { static std::string getGraphName(const MachineFunction *F) { return "CFG for '" + F->getFunction()->getName() + "' function"; } static std::string getNodeLabel(const MachineBasicBlock *Node, const MachineFunction *Graph) { if (CFGOnly && Node->getBasicBlock() && !Node->getBasicBlock()->getName().empty()) return Node->getBasicBlock()->getName() + ":"; std::ostringstream Out; if (CFGOnly) { Out << Node->getNumber() << ':'; return Out.str(); } Node->print(Out); std::string OutStr = Out.str(); if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); // Process string output to make it nicer... for (unsigned i = 0; i != OutStr.length(); ++i) if (OutStr[i] == '\n') { // Left justify OutStr[i] = '\\'; OutStr.insert(OutStr.begin()+i+1, 'l'); } return OutStr; } }; } void MachineFunction::viewCFG() const { #ifndef NDEBUG std::string Filename = "/tmp/cfg." + getFunction()->getName() + ".dot"; std::cerr << "Writing '" << Filename << "'... "; std::ofstream F(Filename.c_str()); if (!F) { std::cerr << " error opening file for writing!\n"; return; } WriteGraph(F, this); F.close(); std::cerr << "\n"; #ifdef HAVE_GRAPHVIZ std::cerr << "Running 'Graphviz' program... " << std::flush; if (system((LLVM_PATH_GRAPHVIZ " " + Filename).c_str())) { std::cerr << "Error viewing graph: 'Graphviz' not in path?\n"; } else { system(("rm " + Filename).c_str()); return; } #endif // HAVE_GRAPHVIZ #ifdef HAVE_GV std::cerr << "Running 'dot' program... " << std::flush; if (system(("dot -Tps -Nfontname=Courier -Gsize=7.5,10 " + Filename + " > /tmp/cfg.tempgraph.ps").c_str())) { std::cerr << "Error running dot: 'dot' not in path?\n"; } else { std::cerr << "\n"; system("gv /tmp/cfg.tempgraph.ps"); } system(("rm " + Filename + " /tmp/cfg.tempgraph.ps").c_str()); return; #endif // HAVE_GV #endif // NDEBUG std::cerr << "MachineFunction::viewCFG is only available in debug builds on " << "systems with Graphviz or gv!\n"; #ifndef NDEBUG system(("rm " + Filename).c_str()); #endif } void MachineFunction::viewCFGOnly() const { CFGOnly = true; viewCFG(); CFGOnly = false; } // The next two methods are used to construct and to retrieve // the MachineCodeForFunction object for the given function. // construct() -- Allocates and initializes for a given function and target // get() -- Returns a handle to the object. // This should not be called before "construct()" // for a given Function. // MachineFunction& MachineFunction::construct(const Function *Fn, const TargetMachine &Tar) { assert(Fn->getAnnotation(MF_AID) == 0 && "Object already exists for this function!"); MachineFunction* mcInfo = new MachineFunction(Fn, Tar); Fn->addAnnotation(mcInfo); return *mcInfo; } void MachineFunction::destruct(const Function *Fn) { bool Deleted = Fn->deleteAnnotation(MF_AID); assert(Deleted && "Machine code did not exist for function!"); } MachineFunction& MachineFunction::get(const Function *F) { MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID); assert(mc && "Call construct() method first to allocate the object"); return *mc; } void MachineFunction::clearSSARegMap() { delete SSARegMapping; SSARegMapping = 0; } //===----------------------------------------------------------------------===// // MachineFrameInfo implementation //===----------------------------------------------------------------------===// void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{ int ValOffset = MF.getTarget().getFrameInfo()->getOffsetOfLocalArea(); for (unsigned i = 0, e = Objects.size(); i != e; ++i) { const StackObject &SO = Objects[i]; OS << " : "; if (SO.Size == 0) OS << "variable sized"; else OS << "size is " << SO.Size << " byte" << (SO.Size != 1 ? "s," : ","); OS << " alignment is " << SO.Alignment << " byte" << (SO.Alignment != 1 ? "s," : ","); if (i < NumFixedObjects) OS << " fixed"; if (i < NumFixedObjects || SO.SPOffset != -1) { int Off = SO.SPOffset - ValOffset; OS << " at location [SP"; if (Off > 0) OS << "+" << Off; else if (Off < 0) OS << Off; OS << "]"; } OS << "\n"; } if (HasVarSizedObjects) OS << " Stack frame contains variable sized objects\n"; } void MachineFrameInfo::dump(const MachineFunction &MF) const { print(MF, std::cerr); } //===----------------------------------------------------------------------===// // MachineJumpTableInfo implementation //===----------------------------------------------------------------------===// /// getJumpTableIndex - Create a new jump table entry in the jump table info /// or return an existing one. /// unsigned MachineJumpTableInfo::getJumpTableIndex( std::vector &DestBBs) { for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) if (JumpTables[i].MBBs == DestBBs) return i; JumpTables.push_back(MachineJumpTableEntry(DestBBs)); return JumpTables.size()-1; } void MachineJumpTableInfo::print(std::ostream &OS) const { // FIXME: this is lame, maybe we could print out the MBB numbers or something // like {1, 2, 4, 5, 3, 0} for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { OS << " has " << JumpTables[i].MBBs.size() << " entries\n"; } } unsigned MachineJumpTableInfo::getEntrySize() const { return TD->getPointerSize(); } unsigned MachineJumpTableInfo::getAlignment() const { return TD->getPointerAlignment(); } void MachineJumpTableInfo::dump() const { print(std::cerr); } //===----------------------------------------------------------------------===// // MachineConstantPool implementation //===----------------------------------------------------------------------===// /// getConstantPoolIndex - Create a new entry in the constant pool or return /// an existing one. User must specify an alignment in bytes for the object. /// unsigned MachineConstantPool::getConstantPoolIndex(Constant *C, unsigned Alignment) { assert(Alignment && "Alignment must be specified!"); if (Alignment > PoolAlignment) PoolAlignment = Alignment; // Check to see if we already have this constant. // // FIXME, this could be made much more efficient for large constant pools. unsigned AlignMask = (1 << Alignment)-1; for (unsigned i = 0, e = Constants.size(); i != e; ++i) if (Constants[i].Val == C && (Constants[i].Offset & AlignMask) == 0) return i; unsigned Offset = 0; if (!Constants.empty()) { Offset = Constants.back().Offset; Offset += TD->getTypeSize(Constants.back().Val->getType()); Offset = (Offset+AlignMask)&~AlignMask; } Constants.push_back(MachineConstantPoolEntry(C, Offset)); return Constants.size()-1; } void MachineConstantPool::print(std::ostream &OS) const { for (unsigned i = 0, e = Constants.size(); i != e; ++i) { OS << " is" << *(Value*)Constants[i].Val; OS << " , offset=" << Constants[i].Offset; OS << "\n"; } } void MachineConstantPool::dump() const { print(std::cerr); }