//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs loop invariant code motion on machine instructions. We // attempt to remove as much code from the body of a loop as possible. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-licm" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" using namespace llvm; STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops"); namespace { class VISIBILITY_HIDDEN MachineLICM : public MachineFunctionPass { const TargetMachine *TM; const TargetInstrInfo *TII; // Various analyses that we use... MachineLoopInfo *LI; // Current MachineLoopInfo MachineDominatorTree *DT; // Machine dominator tree for the cur loop MachineRegisterInfo *RegInfo; // Machine register information // State that is updated as we process loops bool Changed; // True if a loop is changed. MachineLoop *CurLoop; // The current loop we are working on. public: static char ID; // Pass identification, replacement for typeid MachineLICM() : MachineFunctionPass(&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); // FIXME: Loop preheaders? virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// VisitAllLoops - Visit all of the loops in depth first order and try to /// hoist invariant instructions from them. /// void VisitAllLoops(MachineLoop *L) { const std::vector &SubLoops = L->getSubLoops(); for (MachineLoop::iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I) { MachineLoop *ML = *I; // Traverse the body of the loop in depth first order on the dominator // tree so that we are guaranteed to see definitions before we see uses. VisitAllLoops(ML); HoistRegion(DT->getNode(ML->getHeader())); } HoistRegion(DT->getNode(L->getHeader())); } /// IsInSubLoop - A little predicate that returns true if the specified /// basic block is in a subloop of the current one, not the current one /// itself. /// bool IsInSubLoop(MachineBasicBlock *BB) { assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); return LI->getLoopFor(BB) != CurLoop; } /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of /// the loop, physical registers aren't accessed (explicitly or implicitly), /// and the instruction is hoistable. /// bool IsLoopInvariantInst(MachineInstr &I); /// FindPredecessors - Get all of the predecessors of the loop that are not /// back-edges. /// void FindPredecessors(std::vector &Preds) { const MachineBasicBlock *Header = CurLoop->getHeader(); for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), E = Header->pred_end(); I != E; ++I) if (!CurLoop->contains(*I)) Preds.push_back(*I); } /// MoveInstToEndOfBlock - Moves the machine instruction to the bottom of /// the predecessor basic block (but before the terminator instructions). /// void MoveInstToEndOfBlock(MachineBasicBlock *ToMBB, MachineBasicBlock *FromMBB, MachineInstr *MI); /// HoistRegion - Walk the specified region of the CFG (defined by all /// blocks dominated by the specified block, and that are in the current /// loop) in depth first order w.r.t the DominatorTree. This allows us to /// visit definitions before uses, allowing us to hoist a loop body in one /// pass without iteration. /// void HoistRegion(MachineDomTreeNode *N); /// Hoist - When an instruction is found to only use loop invariant operands /// that is safe to hoist, this instruction is called to do the dirty work. /// void Hoist(MachineInstr &MI); }; } // end anonymous namespace char MachineLICM::ID = 0; static RegisterPass X("machinelicm", "Machine Loop Invariant Code Motion"); FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); } /// Hoist expressions out of the specified loop. Note, alias info for inner loop /// is not preserved so it is not a good idea to run LICM multiple times on one /// loop. /// bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { DOUT << "******** Machine LICM ********\n"; Changed = false; TM = &MF.getTarget(); TII = TM->getInstrInfo(); RegInfo = &MF.getRegInfo(); // Get our Loop information... LI = &getAnalysis(); DT = &getAnalysis(); for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { CurLoop = *I; // Visit all of the instructions of the loop. We want to visit the subloops // first, though, so that we can hoist their invariants first into their // containing loop before we process that loop. VisitAllLoops(CurLoop); } return Changed; } /// HoistRegion - Walk the specified region of the CFG (defined by all blocks /// dominated by the specified block, and that are in the current loop) in depth /// first order w.r.t the DominatorTree. This allows us to visit definitions /// before uses, allowing us to hoist a loop body in one pass without iteration. /// void MachineLICM::HoistRegion(MachineDomTreeNode *N) { assert(N != 0 && "Null dominator tree node?"); MachineBasicBlock *BB = N->getBlock(); // If this subregion is not in the top level loop at all, exit. if (!CurLoop->contains(BB)) return; // Only need to process the contents of this block if it is not part of a // subloop (which would already have been processed). if (!IsInSubLoop(BB)) for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { MachineInstr &MI = *I++; // Try hoisting the instruction out of the loop. We can only do this if // all of the operands of the instruction are loop invariant and if it is // safe to hoist the instruction. Hoist(MI); } const std::vector &Children = N->getChildren(); for (unsigned I = 0, E = Children.size(); I != E; ++I) HoistRegion(Children[I]); } /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of the /// loop, physical registers aren't accessed explicitly, and there are no side /// effects that aren't captured by the operands or other flags. /// bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { const TargetInstrDesc &TID = I.getDesc(); // Ignore stuff that we obviously can't hoist. if (TID.mayStore() || TID.isCall() || TID.isReturn() || TID.isBranch() || TID.hasUnmodeledSideEffects()) return false; if (TID.mayLoad()) { // Okay, this instruction does a load. As a refinement, we allow the target // to decide whether the loaded value is actually a constant. If so, we can // actually use it as a load. if (!TII->isInvariantLoad(&I)) // FIXME: we should be able to sink loads with no other side effects if // there is nothing that can change memory from here until the end of // block. This is a trivial form of alias analysis. return false; } DEBUG({ DOUT << "--- Checking if we can hoist " << I; if (I.getDesc().getImplicitUses()) { DOUT << " * Instruction has implicit uses:\n"; const TargetRegisterInfo *TRI = TM->getRegisterInfo(); for (const unsigned *ImpUses = I.getDesc().getImplicitUses(); *ImpUses; ++ImpUses) DOUT << " -> " << TRI->getName(*ImpUses) << "\n"; } if (I.getDesc().getImplicitDefs()) { DOUT << " * Instruction has implicit defines:\n"; const TargetRegisterInfo *TRI = TM->getRegisterInfo(); for (const unsigned *ImpDefs = I.getDesc().getImplicitDefs(); *ImpDefs; ++ImpDefs) DOUT << " -> " << TRI->getName(*ImpDefs) << "\n"; } }); if (I.getDesc().getImplicitDefs() || I.getDesc().getImplicitUses()) { DOUT << "Cannot hoist with implicit defines or uses\n"; return false; } // The instruction is loop invariant if all of its operands are. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { const MachineOperand &MO = I.getOperand(i); if (!MO.isRegister()) continue; if (MO.isDef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) // Don't hoist an instruction that defines a physical register. return false; if (!MO.isUse()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // Don't hoist instructions that access physical registers. if (TargetRegisterInfo::isPhysicalRegister(Reg)) return false; assert(RegInfo->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!"); // If the loop contains the definition of an operand, then the instruction // isn't loop invariant. if (CurLoop->contains(RegInfo->getVRegDef(Reg)->getParent())) return false; } // If we got this far, the instruction is loop invariant! return true; } /// MoveInstToEndOfBlock - Moves the machine instruction to the bottom of the /// predecessor basic block (but before the terminator instructions). /// void MachineLICM::MoveInstToEndOfBlock(MachineBasicBlock *ToMBB, MachineBasicBlock *FromMBB, MachineInstr *MI) { DEBUG({ DOUT << "Hoisting " << *MI; if (ToMBB->getBasicBlock()) DOUT << " to MachineBasicBlock " << ToMBB->getBasicBlock()->getName(); if (FromMBB->getBasicBlock()) DOUT << " from MachineBasicBlock " << FromMBB->getBasicBlock()->getName(); DOUT << "\n"; }); MachineBasicBlock::iterator WhereIter = ToMBB->getFirstTerminator(); MachineBasicBlock::iterator To, From = FromMBB->begin(); while (&*From != MI) ++From; assert(From != FromMBB->end() && "Didn't find instr in BB!"); To = From; ToMBB->splice(WhereIter, FromMBB, From, ++To); ++NumHoisted; } /// Hoist - When an instruction is found to use only loop invariant operands /// that are safe to hoist, this instruction is called to do the dirty work. /// void MachineLICM::Hoist(MachineInstr &MI) { if (!IsLoopInvariantInst(MI)) return; std::vector Preds; // Non-back-edge predecessors. FindPredecessors(Preds); // Either we don't have any predecessors(?!) or we have more than one, which // is forbidden. if (Preds.empty() || Preds.size() != 1) return; // Check that the predecessor is qualified to take the hoisted instruction. // I.e., there is only one edge from the predecessor, and it's to the loop // header. MachineBasicBlock *MBB = Preds.front(); // FIXME: We are assuming at first that the basic block coming into this loop // has only one successor. This isn't the case in general because we haven't // broken critical edges or added preheaders. if (MBB->succ_size() != 1) return; assert(*MBB->succ_begin() == CurLoop->getHeader() && "The predecessor doesn't feed directly into the loop header!"); // Now move the instructions to the predecessor. MoveInstToEndOfBlock(MBB, MI.getParent(), &MI); Changed = true; }