//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs loop invariant code motion on machine instructions. We // attempt to remove as much code from the body of a loop as possible. // // This pass does not attempt to throttle itself to limit register pressure. // The register allocation phases are expected to perform rematerialization // to recover when register pressure is high. // // This pass is not intended to be a replacement or a complete alternative // for the LLVM-IR-level LICM pass. It is only designed to hoist simple // constructs that are not exposed before lowering and instruction selection. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; #define DEBUG_TYPE "machine-licm" static cl::opt AvoidSpeculation("avoid-speculation", cl::desc("MachineLICM should avoid speculation"), cl::init(true), cl::Hidden); STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops"); STATISTIC(NumLowRP, "Number of instructions hoisted in low reg pressure situation"); STATISTIC(NumHighLatency, "Number of high latency instructions hoisted"); STATISTIC(NumCSEed, "Number of hoisted machine instructions CSEed"); STATISTIC(NumPostRAHoisted, "Number of machine instructions hoisted out of loops post regalloc"); namespace { class MachineLICM : public MachineFunctionPass { const TargetMachine *TM; const TargetInstrInfo *TII; const TargetLoweringBase *TLI; const TargetRegisterInfo *TRI; const MachineFrameInfo *MFI; MachineRegisterInfo *MRI; const InstrItineraryData *InstrItins; bool PreRegAlloc; // Various analyses that we use... AliasAnalysis *AA; // Alias analysis info. MachineLoopInfo *MLI; // Current MachineLoopInfo MachineDominatorTree *DT; // Machine dominator tree for the cur loop // State that is updated as we process loops bool Changed; // True if a loop is changed. bool FirstInLoop; // True if it's the first LICM in the loop. MachineLoop *CurLoop; // The current loop we are working on. MachineBasicBlock *CurPreheader; // The preheader for CurLoop. // Exit blocks for CurLoop. SmallVector ExitBlocks; bool isExitBlock(const MachineBasicBlock *MBB) const { return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != ExitBlocks.end(); } // Track 'estimated' register pressure. SmallSet RegSeen; SmallVector RegPressure; // Register pressure "limit" per register class. If the pressure // is higher than the limit, then it's considered high. SmallVector RegLimit; // Register pressure on path leading from loop preheader to current BB. SmallVector, 16> BackTrace; // For each opcode, keep a list of potential CSE instructions. DenseMap > CSEMap; enum { SpeculateFalse = 0, SpeculateTrue = 1, SpeculateUnknown = 2 }; // If a MBB does not dominate loop exiting blocks then it may not safe // to hoist loads from this block. // Tri-state: 0 - false, 1 - true, 2 - unknown unsigned SpeculationState; public: static char ID; // Pass identification, replacement for typeid MachineLICM() : MachineFunctionPass(ID), PreRegAlloc(true) { initializeMachineLICMPass(*PassRegistry::getPassRegistry()); } explicit MachineLICM(bool PreRA) : MachineFunctionPass(ID), PreRegAlloc(PreRA) { initializeMachineLICMPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } void releaseMemory() override { RegSeen.clear(); RegPressure.clear(); RegLimit.clear(); BackTrace.clear(); for (DenseMap >::iterator CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI) CI->second.clear(); CSEMap.clear(); } private: /// CandidateInfo - Keep track of information about hoisting candidates. struct CandidateInfo { MachineInstr *MI; unsigned Def; int FI; CandidateInfo(MachineInstr *mi, unsigned def, int fi) : MI(mi), Def(def), FI(fi) {} }; /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop /// invariants out to the preheader. void HoistRegionPostRA(); /// HoistPostRA - When an instruction is found to only use loop invariant /// operands that is safe to hoist, this instruction is called to do the /// dirty work. void HoistPostRA(MachineInstr *MI, unsigned Def); /// ProcessMI - Examine the instruction for potentai LICM candidate. Also /// gather register def and frame object update information. void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, BitVector &PhysRegClobbers, SmallSet &StoredFIs, SmallVectorImpl &Candidates); /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the /// current loop. void AddToLiveIns(unsigned Reg); /// IsLICMCandidate - Returns true if the instruction may be a suitable /// candidate for LICM. e.g. If the instruction is a call, then it's /// obviously not safe to hoist it. bool IsLICMCandidate(MachineInstr &I); /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of /// the loop, physical registers aren't accessed (explicitly or implicitly), /// and the instruction is hoistable. /// bool IsLoopInvariantInst(MachineInstr &I); /// HasLoopPHIUse - Return true if the specified instruction is used by any /// phi node in the current loop. bool HasLoopPHIUse(const MachineInstr *MI) const; /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' /// and an use in the current loop, return true if the target considered /// it 'high'. bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, unsigned Reg) const; bool IsCheapInstruction(MachineInstr &MI) const; /// CanCauseHighRegPressure - Visit BBs from header to current BB, /// check if hoisting an instruction of the given cost matrix can cause high /// register pressure. bool CanCauseHighRegPressure(DenseMap &Cost, bool Cheap); /// UpdateBackTraceRegPressure - Traverse the back trace from header to /// the current block and update their register pressures to reflect the /// effect of hoisting MI from the current block to the preheader. void UpdateBackTraceRegPressure(const MachineInstr *MI); /// IsProfitableToHoist - Return true if it is potentially profitable to /// hoist the given loop invariant. bool IsProfitableToHoist(MachineInstr &MI); /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. /// If not then a load from this mbb may not be safe to hoist. bool IsGuaranteedToExecute(MachineBasicBlock *BB); void EnterScope(MachineBasicBlock *MBB); void ExitScope(MachineBasicBlock *MBB); /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given /// dominator tree node if its a leaf or all of its children are done. Walk /// up the dominator tree to destroy ancestors which are now done. void ExitScopeIfDone(MachineDomTreeNode *Node, DenseMap &OpenChildren, DenseMap &ParentMap); /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all /// blocks dominated by the specified header block, and that are in the /// current loop) in depth first order w.r.t the DominatorTree. This allows /// us to visit definitions before uses, allowing us to hoist a loop body in /// one pass without iteration. /// void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); void HoistRegion(MachineDomTreeNode *N, bool IsHeader); /// getRegisterClassIDAndCost - For a given MI, register, and the operand /// index, return the ID and cost of its representative register class by /// reference. void getRegisterClassIDAndCost(const MachineInstr *MI, unsigned Reg, unsigned OpIdx, unsigned &RCId, unsigned &RCCost) const; /// InitRegPressure - Find all virtual register references that are liveout /// of the preheader to initialize the starting "register pressure". Note /// this does not count live through (livein but not used) registers. void InitRegPressure(MachineBasicBlock *BB); /// UpdateRegPressure - Update estimate of register pressure after the /// specified instruction. void UpdateRegPressure(const MachineInstr *MI); /// ExtractHoistableLoad - Unfold a load from the given machineinstr if /// the load itself could be hoisted. Return the unfolded and hoistable /// load, or null if the load couldn't be unfolded or if it wouldn't /// be hoistable. MachineInstr *ExtractHoistableLoad(MachineInstr *MI); /// LookForDuplicate - Find an instruction amount PrevMIs that is a /// duplicate of MI. Return this instruction if it's found. const MachineInstr *LookForDuplicate(const MachineInstr *MI, std::vector &PrevMIs); /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on /// the preheader that compute the same value. If it's found, do a RAU on /// with the definition of the existing instruction rather than hoisting /// the instruction to the preheader. bool EliminateCSE(MachineInstr *MI, DenseMap >::iterator &CI); /// MayCSE - Return true if the given instruction will be CSE'd if it's /// hoisted out of the loop. bool MayCSE(MachineInstr *MI); /// Hoist - When an instruction is found to only use loop invariant operands /// that is safe to hoist, this instruction is called to do the dirty work. /// It returns true if the instruction is hoisted. bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); /// InitCSEMap - Initialize the CSE map with instructions that are in the /// current loop preheader that may become duplicates of instructions that /// are hoisted out of the loop. void InitCSEMap(MachineBasicBlock *BB); /// getCurPreheader - Get the preheader for the current loop, splitting /// a critical edge if needed. MachineBasicBlock *getCurPreheader(); }; } // end anonymous namespace char MachineLICM::ID = 0; char &llvm::MachineLICMID = MachineLICM::ID; INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", "Machine Loop Invariant Code Motion", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(MachineLICM, "machinelicm", "Machine Loop Invariant Code Motion", false, false) /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most /// loop that has a unique predecessor. static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { // Check whether this loop even has a unique predecessor. if (!CurLoop->getLoopPredecessor()) return false; // Ok, now check to see if any of its outer loops do. for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) if (L->getLoopPredecessor()) return false; // None of them did, so this is the outermost with a unique predecessor. return true; } bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { if (skipOptnoneFunction(*MF.getFunction())) return false; Changed = FirstInLoop = false; TM = &MF.getTarget(); TII = TM->getInstrInfo(); TLI = TM->getTargetLowering(); TRI = TM->getRegisterInfo(); MFI = MF.getFrameInfo(); MRI = &MF.getRegInfo(); InstrItins = TM->getInstrItineraryData(); PreRegAlloc = MRI->isSSA(); if (PreRegAlloc) DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); else DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); DEBUG(dbgs() << MF.getName() << " ********\n"); if (PreRegAlloc) { // Estimate register pressure during pre-regalloc pass. unsigned NumRC = TRI->getNumRegClasses(); RegPressure.resize(NumRC); std::fill(RegPressure.begin(), RegPressure.end(), 0); RegLimit.resize(NumRC); for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), E = TRI->regclass_end(); I != E; ++I) RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF); } // Get our Loop information... MLI = &getAnalysis(); DT = &getAnalysis(); AA = &getAnalysis(); SmallVector Worklist(MLI->begin(), MLI->end()); while (!Worklist.empty()) { CurLoop = Worklist.pop_back_val(); CurPreheader = nullptr; ExitBlocks.clear(); // If this is done before regalloc, only visit outer-most preheader-sporting // loops. if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { Worklist.append(CurLoop->begin(), CurLoop->end()); continue; } CurLoop->getExitBlocks(ExitBlocks); if (!PreRegAlloc) HoistRegionPostRA(); else { // CSEMap is initialized for loop header when the first instruction is // being hoisted. MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); FirstInLoop = true; HoistOutOfLoop(N); CSEMap.clear(); } } return Changed; } /// InstructionStoresToFI - Return true if instruction stores to the /// specified frame. static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), oe = MI->memoperands_end(); o != oe; ++o) { if (!(*o)->isStore() || !(*o)->getPseudoValue()) continue; if (const FixedStackPseudoSourceValue *Value = dyn_cast((*o)->getPseudoValue())) { if (Value->getFrameIndex() == FI) return true; } } return false; } /// ProcessMI - Examine the instruction for potentai LICM candidate. Also /// gather register def and frame object update information. void MachineLICM::ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, BitVector &PhysRegClobbers, SmallSet &StoredFIs, SmallVectorImpl &Candidates) { bool RuledOut = false; bool HasNonInvariantUse = false; unsigned Def = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isFI()) { // Remember if the instruction stores to the frame index. int FI = MO.getIndex(); if (!StoredFIs.count(FI) && MFI->isSpillSlotObjectIndex(FI) && InstructionStoresToFI(MI, FI)) StoredFIs.insert(FI); HasNonInvariantUse = true; continue; } // We can't hoist an instruction defining a physreg that is clobbered in // the loop. if (MO.isRegMask()) { PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); continue; } if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Not expecting virtual register!"); if (!MO.isDef()) { if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) // If it's using a non-loop-invariant register, then it's obviously not // safe to hoist. HasNonInvariantUse = true; continue; } if (MO.isImplicit()) { for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) PhysRegClobbers.set(*AI); if (!MO.isDead()) // Non-dead implicit def? This cannot be hoisted. RuledOut = true; // No need to check if a dead implicit def is also defined by // another instruction. continue; } // FIXME: For now, avoid instructions with multiple defs, unless // it's a dead implicit def. if (Def) RuledOut = true; else Def = Reg; // If we have already seen another instruction that defines the same // register, then this is not safe. Two defs is indicated by setting a // PhysRegClobbers bit. for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { if (PhysRegDefs.test(*AS)) PhysRegClobbers.set(*AS); PhysRegDefs.set(*AS); } if (PhysRegClobbers.test(Reg)) // MI defined register is seen defined by another instruction in // the loop, it cannot be a LICM candidate. RuledOut = true; } // Only consider reloads for now and remats which do not have register // operands. FIXME: Consider unfold load folding instructions. if (Def && !RuledOut) { int FI = INT_MIN; if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) Candidates.push_back(CandidateInfo(MI, Def, FI)); } } /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop /// invariants out to the preheader. void MachineLICM::HoistRegionPostRA() { MachineBasicBlock *Preheader = getCurPreheader(); if (!Preheader) return; unsigned NumRegs = TRI->getNumRegs(); BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. SmallVector Candidates; SmallSet StoredFIs; // Walk the entire region, count number of defs for each register, and // collect potential LICM candidates. const std::vector &Blocks = CurLoop->getBlocks(); for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { MachineBasicBlock *BB = Blocks[i]; // If the header of the loop containing this basic block is a landing pad, // then don't try to hoist instructions out of this loop. const MachineLoop *ML = MLI->getLoopFor(BB); if (ML && ML->getHeader()->isLandingPad()) continue; // Conservatively treat live-in's as an external def. // FIXME: That means a reload that're reused in successor block(s) will not // be LICM'ed. for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), E = BB->livein_end(); I != E; ++I) { unsigned Reg = *I; for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) PhysRegDefs.set(*AI); } SpeculationState = SpeculateUnknown; for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ++MII) { MachineInstr *MI = &*MII; ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); } } // Gather the registers read / clobbered by the terminator. BitVector TermRegs(NumRegs); MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); if (TI != Preheader->end()) { for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = TI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) TermRegs.set(*AI); } } // Now evaluate whether the potential candidates qualify. // 1. Check if the candidate defined register is defined by another // instruction in the loop. // 2. If the candidate is a load from stack slot (always true for now), // check if the slot is stored anywhere in the loop. // 3. Make sure candidate def should not clobber // registers read by the terminator. Similarly its def should not be // clobbered by the terminator. for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { if (Candidates[i].FI != INT_MIN && StoredFIs.count(Candidates[i].FI)) continue; unsigned Def = Candidates[i].Def; if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { bool Safe = true; MachineInstr *MI = Candidates[i].MI; for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg() || MO.isDef() || !MO.getReg()) continue; unsigned Reg = MO.getReg(); if (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)) { // If it's using a non-loop-invariant register, then it's obviously // not safe to hoist. Safe = false; break; } } if (Safe) HoistPostRA(MI, Candidates[i].Def); } } } /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current /// loop, and make sure it is not killed by any instructions in the loop. void MachineLICM::AddToLiveIns(unsigned Reg) { const std::vector &Blocks = CurLoop->getBlocks(); for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { MachineBasicBlock *BB = Blocks[i]; if (!BB->isLiveIn(Reg)) BB->addLiveIn(Reg); for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ++MII) { MachineInstr *MI = &*MII; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) MO.setIsKill(false); } } } } /// HoistPostRA - When an instruction is found to only use loop invariant /// operands that is safe to hoist, this instruction is called to do the /// dirty work. void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { MachineBasicBlock *Preheader = getCurPreheader(); // Now move the instructions to the predecessor, inserting it before any // terminator instructions. DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" << MI->getParent()->getNumber() << ": " << *MI); // Splice the instruction to the preheader. MachineBasicBlock *MBB = MI->getParent(); Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); // Add register to livein list to all the BBs in the current loop since a // loop invariant must be kept live throughout the whole loop. This is // important to ensure later passes do not scavenge the def register. AddToLiveIns(Def); ++NumPostRAHoisted; Changed = true; } // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. // If not then a load from this mbb may not be safe to hoist. bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { if (SpeculationState != SpeculateUnknown) return SpeculationState == SpeculateFalse; if (BB != CurLoop->getHeader()) { // Check loop exiting blocks. SmallVector CurrentLoopExitingBlocks; CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i) if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) { SpeculationState = SpeculateTrue; return false; } } SpeculationState = SpeculateFalse; return true; } void MachineLICM::EnterScope(MachineBasicBlock *MBB) { DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); // Remember livein register pressure. BackTrace.push_back(RegPressure); } void MachineLICM::ExitScope(MachineBasicBlock *MBB) { DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); BackTrace.pop_back(); } /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given /// dominator tree node if its a leaf or all of its children are done. Walk /// up the dominator tree to destroy ancestors which are now done. void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, DenseMap &OpenChildren, DenseMap &ParentMap) { if (OpenChildren[Node]) return; // Pop scope. ExitScope(Node->getBlock()); // Now traverse upwards to pop ancestors whose offsprings are all done. while (MachineDomTreeNode *Parent = ParentMap[Node]) { unsigned Left = --OpenChildren[Parent]; if (Left != 0) break; ExitScope(Parent->getBlock()); Node = Parent; } } /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all /// blocks dominated by the specified header block, and that are in the /// current loop) in depth first order w.r.t the DominatorTree. This allows /// us to visit definitions before uses, allowing us to hoist a loop body in /// one pass without iteration. /// void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { SmallVector Scopes; SmallVector WorkList; DenseMap ParentMap; DenseMap OpenChildren; // Perform a DFS walk to determine the order of visit. WorkList.push_back(HeaderN); do { MachineDomTreeNode *Node = WorkList.pop_back_val(); assert(Node && "Null dominator tree node?"); MachineBasicBlock *BB = Node->getBlock(); // If the header of the loop containing this basic block is a landing pad, // then don't try to hoist instructions out of this loop. const MachineLoop *ML = MLI->getLoopFor(BB); if (ML && ML->getHeader()->isLandingPad()) continue; // If this subregion is not in the top level loop at all, exit. if (!CurLoop->contains(BB)) continue; Scopes.push_back(Node); const std::vector &Children = Node->getChildren(); unsigned NumChildren = Children.size(); // Don't hoist things out of a large switch statement. This often causes // code to be hoisted that wasn't going to be executed, and increases // register pressure in a situation where it's likely to matter. if (BB->succ_size() >= 25) NumChildren = 0; OpenChildren[Node] = NumChildren; // Add children in reverse order as then the next popped worklist node is // the first child of this node. This means we ultimately traverse the // DOM tree in exactly the same order as if we'd recursed. for (int i = (int)NumChildren-1; i >= 0; --i) { MachineDomTreeNode *Child = Children[i]; ParentMap[Child] = Node; WorkList.push_back(Child); } } while (!WorkList.empty()); if (Scopes.size() != 0) { MachineBasicBlock *Preheader = getCurPreheader(); if (!Preheader) return; // Compute registers which are livein into the loop headers. RegSeen.clear(); BackTrace.clear(); InitRegPressure(Preheader); } // Now perform LICM. for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { MachineDomTreeNode *Node = Scopes[i]; MachineBasicBlock *MBB = Node->getBlock(); MachineBasicBlock *Preheader = getCurPreheader(); if (!Preheader) continue; EnterScope(MBB); // Process the block SpeculationState = SpeculateUnknown; for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E; ) { MachineBasicBlock::iterator NextMII = MII; ++NextMII; MachineInstr *MI = &*MII; if (!Hoist(MI, Preheader)) UpdateRegPressure(MI); MII = NextMII; } // If it's a leaf node, it's done. Traverse upwards to pop ancestors. ExitScopeIfDone(Node, OpenChildren, ParentMap); } } static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); } /// getRegisterClassIDAndCost - For a given MI, register, and the operand /// index, return the ID and cost of its representative register class. void MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI, unsigned Reg, unsigned OpIdx, unsigned &RCId, unsigned &RCCost) const { const TargetRegisterClass *RC = MRI->getRegClass(Reg); MVT VT = *RC->vt_begin(); if (VT == MVT::Untyped) { RCId = RC->getID(); RCCost = 1; } else { RCId = TLI->getRepRegClassFor(VT)->getID(); RCCost = TLI->getRepRegClassCostFor(VT); } } /// InitRegPressure - Find all virtual register references that are liveout of /// the preheader to initialize the starting "register pressure". Note this /// does not count live through (livein but not used) registers. void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { std::fill(RegPressure.begin(), RegPressure.end(), 0); // If the preheader has only a single predecessor and it ends with a // fallthrough or an unconditional branch, then scan its predecessor for live // defs as well. This happens whenever the preheader is created by splitting // the critical edge from the loop predecessor to the loop header. if (BB->pred_size() == 1) { MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) InitRegPressure(*BB->pred_begin()); } for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ++MII) { MachineInstr *MI = &*MII; for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.isImplicit()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; bool isNew = RegSeen.insert(Reg); unsigned RCId, RCCost; getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); if (MO.isDef()) RegPressure[RCId] += RCCost; else { bool isKill = isOperandKill(MO, MRI); if (isNew && !isKill) // Haven't seen this, it must be a livein. RegPressure[RCId] += RCCost; else if (!isNew && isKill) RegPressure[RCId] -= RCCost; } } } } /// UpdateRegPressure - Update estimate of register pressure after the /// specified instruction. void MachineLICM::UpdateRegPressure(const MachineInstr *MI) { if (MI->isImplicitDef()) return; SmallVector Defs; for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.isImplicit()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; bool isNew = RegSeen.insert(Reg); if (MO.isDef()) Defs.push_back(Reg); else if (!isNew && isOperandKill(MO, MRI)) { unsigned RCId, RCCost; getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); if (RCCost > RegPressure[RCId]) RegPressure[RCId] = 0; else RegPressure[RCId] -= RCCost; } } unsigned Idx = 0; while (!Defs.empty()) { unsigned Reg = Defs.pop_back_val(); unsigned RCId, RCCost; getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost); RegPressure[RCId] += RCCost; ++Idx; } } /// isLoadFromGOTOrConstantPool - Return true if this machine instruction /// loads from global offset table or constant pool. static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) { assert (MI.mayLoad() && "Expected MI that loads!"); for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), E = MI.memoperands_end(); I != E; ++I) { if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) { if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool()) return true; } } return false; } /// IsLICMCandidate - Returns true if the instruction may be a suitable /// candidate for LICM. e.g. If the instruction is a call, then it's obviously /// not safe to hoist it. bool MachineLICM::IsLICMCandidate(MachineInstr &I) { // Check if it's safe to move the instruction. bool DontMoveAcrossStore = true; if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) return false; // If it is load then check if it is guaranteed to execute by making sure that // it dominates all exiting blocks. If it doesn't, then there is a path out of // the loop which does not execute this load, so we can't hoist it. Loads // from constant memory are not safe to speculate all the time, for example // indexed load from a jump table. // Stores and side effects are already checked by isSafeToMove. if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) && !IsGuaranteedToExecute(I.getParent())) return false; return true; } /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of the /// loop, physical registers aren't accessed explicitly, and there are no side /// effects that aren't captured by the operands or other flags. /// bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { if (!IsLICMCandidate(I)) return false; // The instruction is loop invariant if all of its operands are. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { const MachineOperand &MO = I.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // Don't hoist an instruction that uses or defines a physical register. if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) return false; // Otherwise it's safe to move. continue; } else if (!MO.isDead()) { // A def that isn't dead. We can't move it. return false; } else if (CurLoop->getHeader()->isLiveIn(Reg)) { // If the reg is live into the loop, we can't hoist an instruction // which would clobber it. return false; } } if (!MO.isUse()) continue; assert(MRI->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!"); // If the loop contains the definition of an operand, then the instruction // isn't loop invariant. if (CurLoop->contains(MRI->getVRegDef(Reg))) return false; } // If we got this far, the instruction is loop invariant! return true; } /// HasLoopPHIUse - Return true if the specified instruction is used by a /// phi node and hoisting it could cause a copy to be inserted. bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { SmallVector Work(1, MI); do { MI = Work.pop_back_val(); for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { if (!MO->isReg() || !MO->isDef()) continue; unsigned Reg = MO->getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { // A PHI may cause a copy to be inserted. if (UseMI.isPHI()) { // A PHI inside the loop causes a copy because the live range of Reg is // extended across the PHI. if (CurLoop->contains(&UseMI)) return true; // A PHI in an exit block can cause a copy to be inserted if the PHI // has multiple predecessors in the loop with different values. // For now, approximate by rejecting all exit blocks. if (isExitBlock(UseMI.getParent())) return true; continue; } // Look past copies as well. if (UseMI.isCopy() && CurLoop->contains(&UseMI)) Work.push_back(&UseMI); } } } while (!Work.empty()); return false; } /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' /// and an use in the current loop, return true if the target considered /// it 'high'. bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, unsigned Reg) const { if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg)) return false; for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { if (UseMI.isCopyLike()) continue; if (!CurLoop->contains(UseMI.getParent())) continue; for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = UseMI.getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned MOReg = MO.getReg(); if (MOReg != Reg) continue; if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i)) return true; } // Only look at the first in loop use. break; } return false; } /// IsCheapInstruction - Return true if the instruction is marked "cheap" or /// the operand latency between its def and a use is one or less. bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { if (MI.isAsCheapAsAMove() || MI.isCopyLike()) return true; if (!InstrItins || InstrItins->isEmpty()) return false; bool isCheap = false; unsigned NumDefs = MI.getDesc().getNumDefs(); for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { MachineOperand &DefMO = MI.getOperand(i); if (!DefMO.isReg() || !DefMO.isDef()) continue; --NumDefs; unsigned Reg = DefMO.getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (!TII->hasLowDefLatency(InstrItins, &MI, i)) return false; isCheap = true; } return isCheap; } /// CanCauseHighRegPressure - Visit BBs from header to current BB, check /// if hoisting an instruction of the given cost matrix can cause high /// register pressure. bool MachineLICM::CanCauseHighRegPressure(DenseMap &Cost, bool CheapInstr) { for (DenseMap::iterator CI = Cost.begin(), CE = Cost.end(); CI != CE; ++CI) { if (CI->second <= 0) continue; unsigned RCId = CI->first; unsigned Limit = RegLimit[RCId]; int Cost = CI->second; // Don't hoist cheap instructions if they would increase register pressure, // even if we're under the limit. if (CheapInstr) return true; for (unsigned i = BackTrace.size(); i != 0; --i) { SmallVectorImpl &RP = BackTrace[i-1]; if (RP[RCId] + Cost >= Limit) return true; } } return false; } /// UpdateBackTraceRegPressure - Traverse the back trace from header to the /// current block and update their register pressures to reflect the effect /// of hoisting MI from the current block to the preheader. void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { if (MI->isImplicitDef()) return; // First compute the 'cost' of the instruction, i.e. its contribution // to register pressure. DenseMap Cost; for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.isImplicit()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; unsigned RCId, RCCost; getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); if (MO.isDef()) { DenseMap::iterator CI = Cost.find(RCId); if (CI != Cost.end()) CI->second += RCCost; else Cost.insert(std::make_pair(RCId, RCCost)); } else if (isOperandKill(MO, MRI)) { DenseMap::iterator CI = Cost.find(RCId); if (CI != Cost.end()) CI->second -= RCCost; else Cost.insert(std::make_pair(RCId, -RCCost)); } } // Update register pressure of blocks from loop header to current block. for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) { SmallVectorImpl &RP = BackTrace[i]; for (DenseMap::iterator CI = Cost.begin(), CE = Cost.end(); CI != CE; ++CI) { unsigned RCId = CI->first; RP[RCId] += CI->second; } } } /// IsProfitableToHoist - Return true if it is potentially profitable to hoist /// the given loop invariant. bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { if (MI.isImplicitDef()) return true; // Besides removing computation from the loop, hoisting an instruction has // these effects: // // - The value defined by the instruction becomes live across the entire // loop. This increases register pressure in the loop. // // - If the value is used by a PHI in the loop, a copy will be required for // lowering the PHI after extending the live range. // // - When hoisting the last use of a value in the loop, that value no longer // needs to be live in the loop. This lowers register pressure in the loop. bool CheapInstr = IsCheapInstruction(MI); bool CreatesCopy = HasLoopPHIUse(&MI); // Don't hoist a cheap instruction if it would create a copy in the loop. if (CheapInstr && CreatesCopy) { DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); return false; } // Rematerializable instructions should always be hoisted since the register // allocator can just pull them down again when needed. if (TII->isTriviallyReMaterializable(&MI, AA)) return true; // Estimate register pressure to determine whether to LICM the instruction. // In low register pressure situation, we can be more aggressive about // hoisting. Also, favors hoisting long latency instructions even in // moderately high pressure situation. // Cheap instructions will only be hoisted if they don't increase register // pressure at all. // FIXME: If there are long latency loop-invariant instructions inside the // loop at this point, why didn't the optimizer's LICM hoist them? DenseMap Cost; for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || MO.isImplicit()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; unsigned RCId, RCCost; getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost); if (MO.isDef()) { if (HasHighOperandLatency(MI, i, Reg)) { DEBUG(dbgs() << "Hoist High Latency: " << MI); ++NumHighLatency; return true; } Cost[RCId] += RCCost; } else if (isOperandKill(MO, MRI)) { // Is a virtual register use is a kill, hoisting it out of the loop // may actually reduce register pressure or be register pressure // neutral. Cost[RCId] -= RCCost; } } // Visit BBs from header to current BB, if hoisting this doesn't cause // high register pressure, then it's safe to proceed. if (!CanCauseHighRegPressure(Cost, CheapInstr)) { DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); ++NumLowRP; return true; } // Don't risk increasing register pressure if it would create copies. if (CreatesCopy) { DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); return false; } // Do not "speculate" in high register pressure situation. If an // instruction is not guaranteed to be executed in the loop, it's best to be // conservative. if (AvoidSpeculation && (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { DEBUG(dbgs() << "Won't speculate: " << MI); return false; } // High register pressure situation, only hoist if the instruction is going // to be remat'ed. if (!TII->isTriviallyReMaterializable(&MI, AA) && !MI.isInvariantLoad(AA)) { DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); return false; } return true; } MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { // Don't unfold simple loads. if (MI->canFoldAsLoad()) return nullptr; // If not, we may be able to unfold a load and hoist that. // First test whether the instruction is loading from an amenable // memory location. if (!MI->isInvariantLoad(AA)) return nullptr; // Next determine the register class for a temporary register. unsigned LoadRegIndex; unsigned NewOpc = TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), /*UnfoldLoad=*/true, /*UnfoldStore=*/false, &LoadRegIndex); if (NewOpc == 0) return nullptr; const MCInstrDesc &MID = TII->get(NewOpc); if (MID.getNumDefs() != 1) return nullptr; MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); // Ok, we're unfolding. Create a temporary register and do the unfold. unsigned Reg = MRI->createVirtualRegister(RC); SmallVector NewMIs; bool Success = TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad=*/true, /*UnfoldStore=*/false, NewMIs); (void)Success; assert(Success && "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " "succeeded!"); assert(NewMIs.size() == 2 && "Unfolded a load into multiple instructions!"); MachineBasicBlock *MBB = MI->getParent(); MachineBasicBlock::iterator Pos = MI; MBB->insert(Pos, NewMIs[0]); MBB->insert(Pos, NewMIs[1]); // If unfolding produced a load that wasn't loop-invariant or profitable to // hoist, discard the new instructions and bail. if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { NewMIs[0]->eraseFromParent(); NewMIs[1]->eraseFromParent(); return nullptr; } // Update register pressure for the unfolded instruction. UpdateRegPressure(NewMIs[1]); // Otherwise we successfully unfolded a load that we can hoist. MI->eraseFromParent(); return NewMIs[0]; } void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { const MachineInstr *MI = &*I; unsigned Opcode = MI->getOpcode(); DenseMap >::iterator CI = CSEMap.find(Opcode); if (CI != CSEMap.end()) CI->second.push_back(MI); else { std::vector CSEMIs; CSEMIs.push_back(MI); CSEMap.insert(std::make_pair(Opcode, CSEMIs)); } } } const MachineInstr* MachineLICM::LookForDuplicate(const MachineInstr *MI, std::vector &PrevMIs) { for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { const MachineInstr *PrevMI = PrevMIs[i]; if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr))) return PrevMI; } return nullptr; } bool MachineLICM::EliminateCSE(MachineInstr *MI, DenseMap >::iterator &CI) { // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate // the undef property onto uses. if (CI == CSEMap.end() || MI->isImplicitDef()) return false; if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); // Replace virtual registers defined by MI by their counterparts defined // by Dup. SmallVector Defs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); // Physical registers may not differ here. assert((!MO.isReg() || MO.getReg() == 0 || !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || MO.getReg() == Dup->getOperand(i).getReg()) && "Instructions with different phys regs are not identical!"); if (MO.isReg() && MO.isDef() && !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) Defs.push_back(i); } SmallVector OrigRCs; for (unsigned i = 0, e = Defs.size(); i != e; ++i) { unsigned Idx = Defs[i]; unsigned Reg = MI->getOperand(Idx).getReg(); unsigned DupReg = Dup->getOperand(Idx).getReg(); OrigRCs.push_back(MRI->getRegClass(DupReg)); if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { // Restore old RCs if more than one defs. for (unsigned j = 0; j != i; ++j) MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); return false; } } for (unsigned i = 0, e = Defs.size(); i != e; ++i) { unsigned Idx = Defs[i]; unsigned Reg = MI->getOperand(Idx).getReg(); unsigned DupReg = Dup->getOperand(Idx).getReg(); MRI->replaceRegWith(Reg, DupReg); MRI->clearKillFlags(DupReg); } MI->eraseFromParent(); ++NumCSEed; return true; } return false; } /// MayCSE - Return true if the given instruction will be CSE'd if it's /// hoisted out of the loop. bool MachineLICM::MayCSE(MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); DenseMap >::iterator CI = CSEMap.find(Opcode); // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate // the undef property onto uses. if (CI == CSEMap.end() || MI->isImplicitDef()) return false; return LookForDuplicate(MI, CI->second) != nullptr; } /// Hoist - When an instruction is found to use only loop invariant operands /// that are safe to hoist, this instruction is called to do the dirty work. /// bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { // First check whether we should hoist this instruction. if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { // If not, try unfolding a hoistable load. MI = ExtractHoistableLoad(MI); if (!MI) return false; } // Now move the instructions to the predecessor, inserting it before any // terminator instructions. DEBUG({ dbgs() << "Hoisting " << *MI; if (Preheader->getBasicBlock()) dbgs() << " to MachineBasicBlock " << Preheader->getName(); if (MI->getParent()->getBasicBlock()) dbgs() << " from MachineBasicBlock " << MI->getParent()->getName(); dbgs() << "\n"; }); // If this is the first instruction being hoisted to the preheader, // initialize the CSE map with potential common expressions. if (FirstInLoop) { InitCSEMap(Preheader); FirstInLoop = false; } // Look for opportunity to CSE the hoisted instruction. unsigned Opcode = MI->getOpcode(); DenseMap >::iterator CI = CSEMap.find(Opcode); if (!EliminateCSE(MI, CI)) { // Otherwise, splice the instruction to the preheader. Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); // Update register pressure for BBs from header to this block. UpdateBackTraceRegPressure(MI); // Clear the kill flags of any register this instruction defines, // since they may need to be live throughout the entire loop // rather than just live for part of it. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && !MO.isDead()) MRI->clearKillFlags(MO.getReg()); } // Add to the CSE map. if (CI != CSEMap.end()) CI->second.push_back(MI); else { std::vector CSEMIs; CSEMIs.push_back(MI); CSEMap.insert(std::make_pair(Opcode, CSEMIs)); } } ++NumHoisted; Changed = true; return true; } MachineBasicBlock *MachineLICM::getCurPreheader() { // Determine the block to which to hoist instructions. If we can't find a // suitable loop predecessor, we can't do any hoisting. // If we've tried to get a preheader and failed, don't try again. if (CurPreheader == reinterpret_cast(-1)) return nullptr; if (!CurPreheader) { CurPreheader = CurLoop->getLoopPreheader(); if (!CurPreheader) { MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); if (!Pred) { CurPreheader = reinterpret_cast(-1); return nullptr; } CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); if (!CurPreheader) { CurPreheader = reinterpret_cast(-1); return nullptr; } } } return CurPreheader; }