//===-- MachineSink.cpp - Sinking for machine instructions ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass moves instructions into successor blocks when possible, so that // they aren't executed on paths where their results aren't needed. // // This pass is not intended to be a replacement or a complete alternative // for an LLVM-IR-level sinking pass. It is only designed to sink simple // constructs that are not exposed before lowering and instruction selection. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-sink" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumSunk, "Number of machine instructions sunk"); namespace { class MachineSinking : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *RegInfo; // Machine register information MachineDominatorTree *DT; // Machine dominator tree MachineLoopInfo *LI; AliasAnalysis *AA; BitVector AllocatableSet; // Which physregs are allocatable? public: static char ID; // Pass identification MachineSinking() : MachineFunctionPass(&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } private: bool ProcessBlock(MachineBasicBlock &MBB); bool SinkInstruction(MachineInstr *MI, bool &SawStore); bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const; bool LiveOutOfBasicBlock(const MachineInstr *MI, unsigned Reg) const; }; } // end anonymous namespace char MachineSinking::ID = 0; static RegisterPass X("machine-sink", "Machine code sinking"); FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); } /// AllUsesDominatedByBlock - Return true if all uses of the specified register /// occur in blocks dominated by the specified block. bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const { assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Only makes sense for vregs"); // Ignoring debug uses is necessary so debug info doesn't affect the code. // This may leave a referencing dbg_value in the original block, before // the definition of the vreg. Dwarf generator handles this although the // user might not get the right info at runtime. for (MachineRegisterInfo::use_nodbg_iterator I = RegInfo->use_nodbg_begin(Reg), E = RegInfo->use_nodbg_end(); I != E; ++I) { // Determine the block of the use. MachineInstr *UseInst = &*I; MachineBasicBlock *UseBlock = UseInst->getParent(); if (UseInst->isPHI()) { // PHI nodes use the operand in the predecessor block, not the block with // the PHI. UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB(); } // Check that it dominates. if (!DT->dominates(MBB, UseBlock)) return false; } return true; } bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "******** Machine Sinking ********\n"); const TargetMachine &TM = MF.getTarget(); TII = TM.getInstrInfo(); TRI = TM.getRegisterInfo(); RegInfo = &MF.getRegInfo(); DT = &getAnalysis(); LI = &getAnalysis(); AA = &getAnalysis(); AllocatableSet = TRI->getAllocatableSet(MF); bool EverMadeChange = false; while (1) { bool MadeChange = false; // Process all basic blocks. for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) MadeChange |= ProcessBlock(*I); // If this iteration over the code changed anything, keep iterating. if (!MadeChange) break; EverMadeChange = true; } return EverMadeChange; } bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { // Can't sink anything out of a block that has less than two successors. if (MBB.succ_size() <= 1 || MBB.empty()) return false; // Don't bother sinking code out of unreachable blocks. In addition to being // unprofitable, it can also lead to infinite looping, because in an unreachable // loop there may be nowhere to stop. if (!DT->isReachableFromEntry(&MBB)) return false; bool MadeChange = false; // Walk the basic block bottom-up. Remember if we saw a store. MachineBasicBlock::iterator I = MBB.end(); --I; bool ProcessedBegin, SawStore = false; do { MachineInstr *MI = I; // The instruction to sink. // Predecrement I (if it's not begin) so that it isn't invalidated by // sinking. ProcessedBegin = I == MBB.begin(); if (!ProcessedBegin) --I; if (MI->isDebugValue()) continue; if (SinkInstruction(MI, SawStore)) ++NumSunk, MadeChange = true; // If we just processed the first instruction in the block, we're done. } while (!ProcessedBegin); return MadeChange; } /// LiveOutOfBasicBlock - Determine if the physical register, defined and dead /// in MI, is live on exit from the basic block. bool MachineSinking::LiveOutOfBasicBlock(const MachineInstr *MI, unsigned Reg) const { assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Only want to determine if a physical register is live out of a BB!"); const MachineBasicBlock *MBB = MI->getParent(); SmallSet KilledRegs; MachineBasicBlock::const_iterator I = MBB->end(); MachineBasicBlock::const_iterator E = MBB->begin(); assert(I != E && "How can there be an empty block at this point?!"); // Loop through the instructions bottom-up. If we see a kill of the preg // first, then it's not live out of the BB. If we see a use or def first, then // we assume that it is live out of the BB. do { const MachineInstr &CurMI = *--I; for (unsigned i = 0, e = CurMI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = CurMI.getOperand(i); if (!MO.isReg()) continue; // Ignore non-register operands. unsigned MOReg = MO.getReg(); if (MOReg == 0) continue; if (MOReg == Reg) { if (MO.isKill()) return false; if (MO.isUse() || MO.isDef()) return true; } } } while (I != E); return false; } /// SinkInstruction - Determine whether it is safe to sink the specified machine /// instruction out of its current block into a successor. bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { // Check if it's safe to move the instruction. if (!MI->isSafeToMove(TII, AA, SawStore)) return false; // FIXME: This should include support for sinking instructions within the // block they are currently in to shorten the live ranges. We often get // instructions sunk into the top of a large block, but it would be better to // also sink them down before their first use in the block. This xform has to // be careful not to *increase* register pressure though, e.g. sinking // "x = y + z" down if it kills y and z would increase the live ranges of y // and z and only shrink the live range of x. // Loop over all the operands of the specified instruction. If there is // anything we can't handle, bail out. MachineBasicBlock *ParentBlock = MI->getParent(); // SuccToSinkTo - This is the successor to sink this instruction to, once we // decide. MachineBasicBlock *SuccToSinkTo = 0; SmallVector PhysRegs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; // Ignore non-register operands. unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!RegInfo->def_empty(Reg)) return false; if (AllocatableSet.test(Reg)) return false; // Check for a def among the register's aliases too. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; if (!RegInfo->def_empty(AliasReg)) return false; if (AllocatableSet.test(AliasReg)) return false; } } else { if (!MO.isDead()) // A def that isn't dead. We can't move it. return false; else PhysRegs.push_back(Reg); } } else { // Virtual register uses are always safe to sink. if (MO.isUse()) continue; // If it's not safe to move defs of the register class, then abort. if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg))) return false; // FIXME: This picks a successor to sink into based on having one // successor that dominates all the uses. However, there are cases where // sinking can happen but where the sink point isn't a successor. For // example: // // x = computation // if () {} else {} // use x // // the instruction could be sunk over the whole diamond for the // if/then/else (or loop, etc), allowing it to be sunk into other blocks // after that. // Virtual register defs can only be sunk if all their uses are in blocks // dominated by one of the successors. if (SuccToSinkTo) { // If a previous operand picked a block to sink to, then this operand // must be sinkable to the same block. if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo)) return false; continue; } // Otherwise, we should look at all the successors and decide which one // we should sink to. for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(), E = ParentBlock->succ_end(); SI != E; ++SI) { if (AllUsesDominatedByBlock(Reg, *SI)) { SuccToSinkTo = *SI; break; } } // If we couldn't find a block to sink to, ignore this instruction. if (SuccToSinkTo == 0) return false; } } // If there are no outputs, it must have side-effects. if (SuccToSinkTo == 0) return false; // It's not safe to sink instructions to EH landing pad. Control flow into // landing pad is implicitly defined. if (SuccToSinkTo->isLandingPad()) return false; // It is not possible to sink an instruction into its own block. This can // happen with loops. if (MI->getParent() == SuccToSinkTo) return false; // If the instruction to move defines a dead physical register which is live // when leaving the basic block, don't move it because it could turn into a // "zombie" define of that preg. E.g., EFLAGS. () for (SmallVectorImpl::const_iterator I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) if (LiveOutOfBasicBlock(MI, *I)) return false; DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); // If the block has multiple predecessors, this would introduce computation on // a path that it doesn't already exist. We could split the critical edge, // but for now we just punt. // FIXME: Split critical edges if not backedges. if (SuccToSinkTo->pred_size() > 1) { // We cannot sink a load across a critical edge - there may be stores in // other code paths. bool store = true; if (!MI->isSafeToMove(TII, AA, store)) { DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n"); return false; } // We don't want to sink across a critical edge if we don't dominate the // successor. We could be introducing calculations to new code paths. if (!DT->dominates(ParentBlock, SuccToSinkTo)) { DEBUG(dbgs() << " *** PUNTING: Critical edge found\n"); return false; } // Don't sink instructions into a loop. if (LI->isLoopHeader(SuccToSinkTo)) { DEBUG(dbgs() << " *** PUNTING: Loop header found\n"); return false; } // Otherwise we are OK with sinking along a critical edge. DEBUG(dbgs() << "Sinking along critical edge.\n"); } // Determine where to insert into. Skip phi nodes. MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) ++InsertPos; // Move the instruction. SuccToSinkTo->splice(InsertPos, ParentBlock, MI, ++MachineBasicBlock::iterator(MI)); // Conservatively, clear any kill flags, since it's possible that they are no // longer correct. MI->clearKillInfo(); return true; }