//===----- SchedulePostRAList.cpp - list scheduler ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a top-down list scheduler, using standard algorithms. // The basic approach uses a priority queue of available nodes to schedule. // One at a time, nodes are taken from the priority queue (thus in priority // order), checked for legality to schedule, and emitted if legal. // // Nodes may not be legal to schedule either due to structural hazards (e.g. // pipeline or resource constraints) or because an input to the instruction has // not completed execution. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "post-RA-sched" #include "ExactHazardRecognizer.h" #include "SimpleHazardRecognizer.h" #include "ScheduleDAGInstrs.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/LatencyPriorityQueue.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; STATISTIC(NumNoops, "Number of noops inserted"); STATISTIC(NumStalls, "Number of pipeline stalls"); static cl::opt EnableAntiDepBreaking("break-anti-dependencies", cl::desc("Break post-RA scheduling anti-dependencies"), cl::init(true), cl::Hidden); static cl::opt EnablePostRAHazardAvoidance("avoid-hazards", cl::desc("Enable exact hazard avoidance"), cl::init(false), cl::Hidden); namespace { class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass { public: static char ID; PostRAScheduler() : MachineFunctionPass(&ID) {} void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } const char *getPassName() const { return "Post RA top-down list latency scheduler"; } bool runOnMachineFunction(MachineFunction &Fn); }; char PostRAScheduler::ID = 0; class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs { /// AvailableQueue - The priority queue to use for the available SUnits. /// LatencyPriorityQueue AvailableQueue; /// PendingQueue - This contains all of the instructions whose operands have /// been issued, but their results are not ready yet (due to the latency of /// the operation). Once the operands becomes available, the instruction is /// added to the AvailableQueue. std::vector PendingQueue; /// Topo - A topological ordering for SUnits. ScheduleDAGTopologicalSort Topo; /// AllocatableSet - The set of allocatable registers. /// We'll be ignoring anti-dependencies on non-allocatable registers, /// because they may not be safe to break. const BitVector AllocatableSet; /// HazardRec - The hazard recognizer to use. ScheduleHazardRecognizer *HazardRec; /// Classes - For live regs that are only used in one register class in a /// live range, the register class. If the register is not live, the /// corresponding value is null. If the register is live but used in /// multiple register classes, the corresponding value is -1 casted to a /// pointer. const TargetRegisterClass * Classes[TargetRegisterInfo::FirstVirtualRegister]; /// RegRegs - Map registers to all their references within a live range. std::multimap RegRefs; /// The index of the most recent kill (proceding bottom-up), or ~0u if /// the register is not live. unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister]; /// The index of the most recent complete def (proceding bottom up), or ~0u /// if the register is live. unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister]; public: SchedulePostRATDList(MachineFunction &MF, const MachineLoopInfo &MLI, const MachineDominatorTree &MDT, ScheduleHazardRecognizer *HR) : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits), AllocatableSet(TRI->getAllocatableSet(MF)), HazardRec(HR) {} ~SchedulePostRATDList() { delete HazardRec; } /// StartBlock - Initialize register live-range state for scheduling in /// this block. /// void StartBlock(MachineBasicBlock *BB); /// Schedule - Schedule the instruction range using list scheduling. /// void Schedule(); /// Observe - Update liveness information to account for the current /// instruction, which will not be scheduled. /// void Observe(MachineInstr *MI, unsigned Count); /// FinishBlock - Clean up register live-range state. /// void FinishBlock(); private: void PrescanInstruction(MachineInstr *MI); void ScanInstruction(MachineInstr *MI, unsigned Count); void ReleaseSucc(SUnit *SU, SDep *SuccEdge); void ReleaseSuccessors(SUnit *SU); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void ListScheduleTopDown(); bool BreakAntiDependencies(); unsigned findSuitableFreeRegister(unsigned AntiDepReg, unsigned LastNewReg, const TargetRegisterClass *); }; } /// isSchedulingBoundary - Test if the given instruction should be /// considered a scheduling boundary. This primarily includes labels /// and terminators. /// static bool isSchedulingBoundary(const MachineInstr *MI, const MachineFunction &MF) { // Terminators and labels can't be scheduled around. if (MI->getDesc().isTerminator() || MI->isLabel()) return true; // Don't attempt to schedule around any instruction that modifies // a stack-oriented pointer, as it's unlikely to be profitable. This // saves compile time, because it doesn't require every single // stack slot reference to depend on the instruction that does the // modification. const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore())) return true; return false; } bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { DEBUG(errs() << "PostRAScheduler\n"); const MachineLoopInfo &MLI = getAnalysis(); const MachineDominatorTree &MDT = getAnalysis(); const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData(); ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ? (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) : (ScheduleHazardRecognizer *)new SimpleHazardRecognizer(); SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR); // Loop over all of the basic blocks for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { // Initialize register live-range state for scheduling in this block. Scheduler.StartBlock(MBB); // Schedule each sequence of instructions not interrupted by a label // or anything else that effectively needs to shut down scheduling. MachineBasicBlock::iterator Current = MBB->end(); unsigned Count = MBB->size(), CurrentCount = Count; for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) { MachineInstr *MI = prior(I); if (isSchedulingBoundary(MI, Fn)) { Scheduler.Run(MBB, I, Current, CurrentCount); Scheduler.EmitSchedule(); Current = MI; CurrentCount = Count - 1; Scheduler.Observe(MI, CurrentCount); } I = MI; --Count; } assert(Count == 0 && "Instruction count mismatch!"); assert((MBB->begin() == Current || CurrentCount != 0) && "Instruction count mismatch!"); Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount); Scheduler.EmitSchedule(); // Clean up register live-range state. Scheduler.FinishBlock(); } return true; } /// StartBlock - Initialize register live-range state for scheduling in /// this block. /// void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) { // Call the superclass. ScheduleDAGInstrs::StartBlock(BB); // Reset the hazard recognizer. HazardRec->Reset(); // Clear out the register class data. std::fill(Classes, array_endof(Classes), static_cast(0)); // Initialize the indices to indicate that no registers are live. std::fill(KillIndices, array_endof(KillIndices), ~0u); std::fill(DefIndices, array_endof(DefIndices), BB->size()); // Determine the live-out physregs for this block. if (!BB->empty() && BB->back().getDesc().isReturn()) // In a return block, examine the function live-out regs. for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), E = MRI.liveout_end(); I != E; ++I) { unsigned Reg = *I; Classes[Reg] = reinterpret_cast(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = ~0u; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = ~0u; } } else // In a non-return block, examine the live-in regs of all successors. for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; Classes[Reg] = reinterpret_cast(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = ~0u; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = ~0u; } } // Consider callee-saved registers as live-out, since we're running after // prologue/epilogue insertion so there's no way to add additional // saved registers. // // TODO: If the callee saves and restores these, then we can potentially // use them between the save and the restore. To do that, we could scan // the exit blocks to see which of these registers are defined. // Alternatively, callee-saved registers that aren't saved and restored // could be marked live-in in every block. for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) { unsigned Reg = *I; Classes[Reg] = reinterpret_cast(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = ~0u; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = ~0u; } } } /// Schedule - Schedule the instruction range using list scheduling. /// void SchedulePostRATDList::Schedule() { DEBUG(errs() << "********** List Scheduling **********\n"); // Build the scheduling graph. BuildSchedGraph(); if (EnableAntiDepBreaking) { if (BreakAntiDependencies()) { // We made changes. Update the dependency graph. // Theoretically we could update the graph in place: // When a live range is changed to use a different register, remove // the def's anti-dependence *and* output-dependence edges due to // that register, and add new anti-dependence and output-dependence // edges based on the next live range of the register. SUnits.clear(); EntrySU = SUnit(); ExitSU = SUnit(); BuildSchedGraph(); } } DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); AvailableQueue.initNodes(SUnits); ListScheduleTopDown(); AvailableQueue.releaseState(); } /// Observe - Update liveness information to account for the current /// instruction, which will not be scheduled. /// void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) { assert(Count < InsertPosIndex && "Instruction index out of expected range!"); // Any register which was defined within the previous scheduling region // may have been rescheduled and its lifetime may overlap with registers // in ways not reflected in our current liveness state. For each such // register, adjust the liveness state to be conservatively correct. for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg) if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { assert(KillIndices[Reg] == ~0u && "Clobbered register is live!"); // Mark this register to be non-renamable. Classes[Reg] = reinterpret_cast(-1); // Move the def index to the end of the previous region, to reflect // that the def could theoretically have been scheduled at the end. DefIndices[Reg] = InsertPosIndex; } PrescanInstruction(MI); ScanInstruction(MI, Count); } /// FinishBlock - Clean up register live-range state. /// void SchedulePostRATDList::FinishBlock() { RegRefs.clear(); // Call the superclass. ScheduleDAGInstrs::FinishBlock(); } /// CriticalPathStep - Return the next SUnit after SU on the bottom-up /// critical path. static SDep *CriticalPathStep(SUnit *SU) { SDep *Next = 0; unsigned NextDepth = 0; // Find the predecessor edge with the greatest depth. for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); P != PE; ++P) { SUnit *PredSU = P->getSUnit(); unsigned PredLatency = P->getLatency(); unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; // In the case of a latency tie, prefer an anti-dependency edge over // other types of edges. if (NextDepth < PredTotalLatency || (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { NextDepth = PredTotalLatency; Next = &*P; } } return Next; } void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) { // Scan the register operands for this instruction and update // Classes and RegRefs. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; const TargetRegisterClass *NewRC = 0; if (i < MI->getDesc().getNumOperands()) NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI); // For now, only allow the register to be changed if its register // class is consistent across all uses. if (!Classes[Reg] && NewRC) Classes[Reg] = NewRC; else if (!NewRC || Classes[Reg] != NewRC) Classes[Reg] = reinterpret_cast(-1); // Now check for aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { // If an alias of the reg is used during the live range, give up. // Note that this allows us to skip checking if AntiDepReg // overlaps with any of the aliases, among other things. unsigned AliasReg = *Alias; if (Classes[AliasReg]) { Classes[AliasReg] = reinterpret_cast(-1); Classes[Reg] = reinterpret_cast(-1); } } // If we're still willing to consider this register, note the reference. if (Classes[Reg] != reinterpret_cast(-1)) RegRefs.insert(std::make_pair(Reg, &MO)); } } void SchedulePostRATDList::ScanInstruction(MachineInstr *MI, unsigned Count) { // Update liveness. // Proceding upwards, registers that are defed but not used in this // instruction are now dead. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!MO.isDef()) continue; // Ignore two-addr defs. if (MI->isRegTiedToUseOperand(i)) continue; DefIndices[Reg] = Count; KillIndices[Reg] = ~0u; assert(((KillIndices[Reg] == ~0u) != (DefIndices[Reg] == ~0u)) && "Kill and Def maps aren't consistent for Reg!"); Classes[Reg] = 0; RegRefs.erase(Reg); // Repeat, for all subregs. for (const unsigned *Subreg = TRI->getSubRegisters(Reg); *Subreg; ++Subreg) { unsigned SubregReg = *Subreg; DefIndices[SubregReg] = Count; KillIndices[SubregReg] = ~0u; Classes[SubregReg] = 0; RegRefs.erase(SubregReg); } // Conservatively mark super-registers as unusable. for (const unsigned *Super = TRI->getSuperRegisters(Reg); *Super; ++Super) { unsigned SuperReg = *Super; Classes[SuperReg] = reinterpret_cast(-1); } } for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!MO.isUse()) continue; const TargetRegisterClass *NewRC = 0; if (i < MI->getDesc().getNumOperands()) NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI); // For now, only allow the register to be changed if its register // class is consistent across all uses. if (!Classes[Reg] && NewRC) Classes[Reg] = NewRC; else if (!NewRC || Classes[Reg] != NewRC) Classes[Reg] = reinterpret_cast(-1); RegRefs.insert(std::make_pair(Reg, &MO)); // It wasn't previously live but now it is, this is a kill. if (KillIndices[Reg] == ~0u) { KillIndices[Reg] = Count; DefIndices[Reg] = ~0u; assert(((KillIndices[Reg] == ~0u) != (DefIndices[Reg] == ~0u)) && "Kill and Def maps aren't consistent for Reg!"); } // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; if (KillIndices[AliasReg] == ~0u) { KillIndices[AliasReg] = Count; DefIndices[AliasReg] = ~0u; } } } } unsigned SchedulePostRATDList::findSuitableFreeRegister(unsigned AntiDepReg, unsigned LastNewReg, const TargetRegisterClass *RC) { for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF), RE = RC->allocation_order_end(MF); R != RE; ++R) { unsigned NewReg = *R; // Don't replace a register with itself. if (NewReg == AntiDepReg) continue; // Don't replace a register with one that was recently used to repair // an anti-dependence with this AntiDepReg, because that would // re-introduce that anti-dependence. if (NewReg == LastNewReg) continue; // If NewReg is dead and NewReg's most recent def is not before // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) && "Kill and Def maps aren't consistent for AntiDepReg!"); assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) && "Kill and Def maps aren't consistent for NewReg!"); if (KillIndices[NewReg] != ~0u || Classes[NewReg] == reinterpret_cast(-1) || KillIndices[AntiDepReg] > DefIndices[NewReg]) continue; return NewReg; } // No registers are free and available! return 0; } /// BreakAntiDependencies - Identifiy anti-dependencies along the critical path /// of the ScheduleDAG and break them by renaming registers. /// bool SchedulePostRATDList::BreakAntiDependencies() { // The code below assumes that there is at least one instruction, // so just duck out immediately if the block is empty. if (SUnits.empty()) return false; // Find the node at the bottom of the critical path. SUnit *Max = 0; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { SUnit *SU = &SUnits[i]; if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) Max = SU; } DEBUG(errs() << "Critical path has total latency " << (Max->getDepth() + Max->Latency) << "\n"); // Track progress along the critical path through the SUnit graph as we walk // the instructions. SUnit *CriticalPathSU = Max; MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); // Consider this pattern: // A = ... // ... = A // A = ... // ... = A // A = ... // ... = A // A = ... // ... = A // There are three anti-dependencies here, and without special care, // we'd break all of them using the same register: // A = ... // ... = A // B = ... // ... = B // B = ... // ... = B // B = ... // ... = B // because at each anti-dependence, B is the first register that // isn't A which is free. This re-introduces anti-dependencies // at all but one of the original anti-dependencies that we were // trying to break. To avoid this, keep track of the most recent // register that each register was replaced with, avoid // using it to repair an anti-dependence on the same register. // This lets us produce this: // A = ... // ... = A // B = ... // ... = B // C = ... // ... = C // B = ... // ... = B // This still has an anti-dependence on B, but at least it isn't on the // original critical path. // // TODO: If we tracked more than one register here, we could potentially // fix that remaining critical edge too. This is a little more involved, // because unlike the most recent register, less recent registers should // still be considered, though only if no other registers are available. unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {}; // Attempt to break anti-dependence edges on the critical path. Walk the // instructions from the bottom up, tracking information about liveness // as we go to help determine which registers are available. bool Changed = false; unsigned Count = InsertPosIndex - 1; for (MachineBasicBlock::iterator I = InsertPos, E = Begin; I != E; --Count) { MachineInstr *MI = --I; // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF // is left behind appearing to clobber the super-register, while the // subregister needs to remain live. So we just ignore them. if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) continue; // Check if this instruction has a dependence on the critical path that // is an anti-dependence that we may be able to break. If it is, set // AntiDepReg to the non-zero register associated with the anti-dependence. // // We limit our attention to the critical path as a heuristic to avoid // breaking anti-dependence edges that aren't going to significantly // impact the overall schedule. There are a limited number of registers // and we want to save them for the important edges. // // TODO: Instructions with multiple defs could have multiple // anti-dependencies. The current code here only knows how to break one // edge per instruction. Note that we'd have to be able to break all of // the anti-dependencies in an instruction in order to be effective. unsigned AntiDepReg = 0; if (MI == CriticalPathMI) { if (SDep *Edge = CriticalPathStep(CriticalPathSU)) { SUnit *NextSU = Edge->getSUnit(); // Only consider anti-dependence edges. if (Edge->getKind() == SDep::Anti) { AntiDepReg = Edge->getReg(); assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); // Don't break anti-dependencies on non-allocatable registers. if (!AllocatableSet.test(AntiDepReg)) AntiDepReg = 0; else { // If the SUnit has other dependencies on the SUnit that it // anti-depends on, don't bother breaking the anti-dependency // since those edges would prevent such units from being // scheduled past each other regardless. // // Also, if there are dependencies on other SUnits with the // same register as the anti-dependency, don't attempt to // break it. for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(), PE = CriticalPathSU->Preds.end(); P != PE; ++P) if (P->getSUnit() == NextSU ? (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { AntiDepReg = 0; break; } } } CriticalPathSU = NextSU; CriticalPathMI = CriticalPathSU->getInstr(); } else { // We've reached the end of the critical path. CriticalPathSU = 0; CriticalPathMI = 0; } } PrescanInstruction(MI); // If this instruction has a use of AntiDepReg, breaking it // is invalid. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (MO.isUse() && AntiDepReg == Reg) { AntiDepReg = 0; break; } } // Determine AntiDepReg's register class, if it is live and is // consistently used within a single class. const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; assert((AntiDepReg == 0 || RC != NULL) && "Register should be live if it's causing an anti-dependence!"); if (RC == reinterpret_cast(-1)) AntiDepReg = 0; // Look for a suitable register to use to break the anti-depenence. // // TODO: Instead of picking the first free register, consider which might // be the best. if (AntiDepReg != 0) { if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg, LastNewReg[AntiDepReg], RC)) { DEBUG(errs() << "Breaking anti-dependence edge on " << TRI->getName(AntiDepReg) << " with " << RegRefs.count(AntiDepReg) << " references" << " using " << TRI->getName(NewReg) << "!\n"); // Update the references to the old register to refer to the new // register. std::pair::iterator, std::multimap::iterator> Range = RegRefs.equal_range(AntiDepReg); for (std::multimap::iterator Q = Range.first, QE = Range.second; Q != QE; ++Q) Q->second->setReg(NewReg); // We just went back in time and modified history; the // liveness information for the anti-depenence reg is now // inconsistent. Set the state as if it were dead. Classes[NewReg] = Classes[AntiDepReg]; DefIndices[NewReg] = DefIndices[AntiDepReg]; KillIndices[NewReg] = KillIndices[AntiDepReg]; assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) && "Kill and Def maps aren't consistent for NewReg!"); Classes[AntiDepReg] = 0; DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; KillIndices[AntiDepReg] = ~0u; assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) && "Kill and Def maps aren't consistent for AntiDepReg!"); RegRefs.erase(AntiDepReg); Changed = true; LastNewReg[AntiDepReg] = NewReg; } } ScanInstruction(MI, Count); } return Changed; } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the PendingQueue if the count reaches zero. Also update its cycle bound. void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { SUnit *SuccSU = SuccEdge->getSUnit(); --SuccSU->NumPredsLeft; #ifndef NDEBUG if (SuccSU->NumPredsLeft < 0) { cerr << "*** Scheduling failed! ***\n"; SuccSU->dump(this); cerr << " has been released too many times!\n"; llvm_unreachable(0); } #endif // Compute how many cycles it will be before this actually becomes // available. This is the max of the start time of all predecessors plus // their latencies. SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); // If all the node's predecessors are scheduled, this node is ready // to be scheduled. Ignore the special ExitSU node. if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) PendingQueue.push_back(SuccSU); } /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) ReleaseSucc(SU, &*I); } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: "); DEBUG(SU->dump(this)); Sequence.push_back(SU); assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!"); SU->setDepthToAtLeast(CurCycle); ReleaseSuccessors(SU); SU->isScheduled = true; AvailableQueue.ScheduledNode(SU); } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void SchedulePostRATDList::ListScheduleTopDown() { unsigned CurCycle = 0; // Release any successors of the special Entry node. ReleaseSuccessors(&EntrySU); // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.empty()) { AvailableQueue.push(&SUnits[i]); SUnits[i].isAvailable = true; } } // In any cycle where we can't schedule any instructions, we must // stall or emit a noop, depending on the target. bool CycleInstCnt = 0; // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. std::vector NotReady; Sequence.reserve(SUnits.size()); while (!AvailableQueue.empty() || !PendingQueue.empty()) { // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. unsigned MinDepth = ~0u; for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { if (PendingQueue[i]->getDepth() <= CurCycle) { AvailableQueue.push(PendingQueue[i]); PendingQueue[i]->isAvailable = true; PendingQueue[i] = PendingQueue.back(); PendingQueue.pop_back(); --i; --e; } else if (PendingQueue[i]->getDepth() < MinDepth) MinDepth = PendingQueue[i]->getDepth(); } DEBUG(errs() << "\n*** Examining Available\n"; LatencyPriorityQueue q = AvailableQueue; while (!q.empty()) { SUnit *su = q.pop(); errs() << "Height " << su->getHeight() << ": "; su->dump(this); }); SUnit *FoundSUnit = 0; bool HasNoopHazards = false; while (!AvailableQueue.empty()) { SUnit *CurSUnit = AvailableQueue.pop(); ScheduleHazardRecognizer::HazardType HT = HazardRec->getHazardType(CurSUnit); if (HT == ScheduleHazardRecognizer::NoHazard) { FoundSUnit = CurSUnit; break; } // Remember if this is a noop hazard. HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; NotReady.push_back(CurSUnit); } // Add the nodes that aren't ready back onto the available list. if (!NotReady.empty()) { AvailableQueue.push_all(NotReady); NotReady.clear(); } // If we found a node to schedule, do it now. if (FoundSUnit) { ScheduleNodeTopDown(FoundSUnit, CurCycle); HazardRec->EmitInstruction(FoundSUnit); CycleInstCnt++; // If we are using the target-specific hazards, then don't // advance the cycle time just because we schedule a node. If // the target allows it we can schedule multiple nodes in the // same cycle. if (!EnablePostRAHazardAvoidance) { if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! ++CurCycle; } } else { if (CycleInstCnt > 0) { DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n'); HazardRec->AdvanceCycle(); } else if (!HasNoopHazards) { // Otherwise, we have a pipeline stall, but no other problem, // just advance the current cycle and try again. DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n'); HazardRec->AdvanceCycle(); ++NumStalls; } else { // Otherwise, we have no instructions to issue and we have instructions // that will fault if we don't do this right. This is the case for // processors without pipeline interlocks and other cases. DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n'); HazardRec->EmitNoop(); Sequence.push_back(0); // NULL here means noop ++NumNoops; } ++CurCycle; CycleInstCnt = 0; } } #ifndef NDEBUG VerifySchedule(/*isBottomUp=*/false); #endif } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// FunctionPass *llvm::createPostRAScheduler() { return new PostRAScheduler(); }