//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is responsible for finalizing the functions frame layout, saving // callee saved registers, and for emitting prolog & epilog code for the // function. // // This pass must be run after register allocation. After this pass is // executed, it is illegal to construct MO_FrameIndex operands. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; namespace { struct VISIBILITY_HIDDEN PEI : public MachineFunctionPass { static const char ID; PEI() : MachineFunctionPass((intptr_t)&ID) {} const char *getPassName() const { return "Prolog/Epilog Insertion & Frame Finalization"; } /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. /// bool runOnMachineFunction(MachineFunction &Fn) { const MRegisterInfo *MRI = Fn.getTarget().getRegisterInfo(); RS = MRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL; // Get MachineModuleInfo so that we can track the construction of the // frame. if (MachineModuleInfo *MMI = getAnalysisToUpdate()) { Fn.getFrameInfo()->setMachineModuleInfo(MMI); } // Allow the target machine to make some adjustments to the function // e.g. UsedPhysRegs before calculateCalleeSavedRegisters. MRI->processFunctionBeforeCalleeSavedScan(Fn, RS); // Scan the function for modified callee saved registers and insert spill // code for any callee saved registers that are modified. Also calculate // the MaxCallFrameSize and HasCalls variables for the function's frame // information and eliminates call frame pseudo instructions. calculateCalleeSavedRegisters(Fn); // Add the code to save and restore the callee saved registers saveCalleeSavedRegisters(Fn); // Allow the target machine to make final modifications to the function // before the frame layout is finalized. Fn.getTarget().getRegisterInfo()->processFunctionBeforeFrameFinalized(Fn); // Calculate actual frame offsets for all of the abstract stack objects... calculateFrameObjectOffsets(Fn); // Add prolog and epilog code to the function. This function is required // to align the stack frame as necessary for any stack variables or // called functions. Because of this, calculateCalleeSavedRegisters // must be called before this function in order to set the HasCalls // and MaxCallFrameSize variables. insertPrologEpilogCode(Fn); // Replace all MO_FrameIndex operands with physical register references // and actual offsets. // replaceFrameIndices(Fn); delete RS; return true; } private: RegScavenger *RS; // MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved // stack frame indexes. unsigned MinCSFrameIndex, MaxCSFrameIndex; void calculateCalleeSavedRegisters(MachineFunction &Fn); void saveCalleeSavedRegisters(MachineFunction &Fn); void calculateFrameObjectOffsets(MachineFunction &Fn); void replaceFrameIndices(MachineFunction &Fn); void insertPrologEpilogCode(MachineFunction &Fn); }; const char PEI::ID = 0; } /// createPrologEpilogCodeInserter - This function returns a pass that inserts /// prolog and epilog code, and eliminates abstract frame references. /// FunctionPass *llvm::createPrologEpilogCodeInserter() { return new PEI(); } /// calculateCalleeSavedRegisters - Scan the function for modified callee saved /// registers. Also calculate the MaxCallFrameSize and HasCalls variables for /// the function's frame information and eliminates call frame pseudo /// instructions. /// void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) { const MRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo(); // Get the callee saved register list... const unsigned *CSRegs = RegInfo->getCalleeSavedRegs(); // Get the function call frame set-up and tear-down instruction opcode int FrameSetupOpcode = RegInfo->getCallFrameSetupOpcode(); int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode(); // These are used to keep track the callee-save area. Initialize them. MinCSFrameIndex = INT_MAX; MaxCSFrameIndex = 0; // Early exit for targets which have no callee saved registers and no call // frame setup/destroy pseudo instructions. if ((CSRegs == 0 || CSRegs[0] == 0) && FrameSetupOpcode == -1 && FrameDestroyOpcode == -1) return; unsigned MaxCallFrameSize = 0; bool HasCalls = false; std::vector FrameSDOps; for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo" " instructions should have a single immediate argument!"); unsigned Size = I->getOperand(0).getImmedValue(); if (Size > MaxCallFrameSize) MaxCallFrameSize = Size; HasCalls = true; FrameSDOps.push_back(I); } MachineFrameInfo *FFI = Fn.getFrameInfo(); FFI->setHasCalls(HasCalls); FFI->setMaxCallFrameSize(MaxCallFrameSize); for (unsigned i = 0, e = FrameSDOps.size(); i != e; ++i) { MachineBasicBlock::iterator I = FrameSDOps[i]; // If call frames are not being included as part of the stack frame, // and there is no dynamic allocation (therefore referencing frame slots // off sp), leave the pseudo ops alone. We'll eliminate them later. if (RegInfo->hasReservedCallFrame(Fn) || RegInfo->hasFP(Fn)) RegInfo->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I); } // Now figure out which *callee saved* registers are modified by the current // function, thus needing to be saved and restored in the prolog/epilog. // const TargetRegisterClass* const *CSRegClasses = RegInfo->getCalleeSavedRegClasses(); std::vector CSI; for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; if (Fn.isPhysRegUsed(Reg)) { // If the reg is modified, save it! CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i])); } else { for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); *AliasSet; ++AliasSet) { // Check alias registers too. if (Fn.isPhysRegUsed(*AliasSet)) { CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i])); break; } } } } if (CSI.empty()) return; // Early exit if no callee saved registers are modified! unsigned NumFixedSpillSlots; const std::pair *FixedSpillSlots = TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots); // Now that we know which registers need to be saved and restored, allocate // stack slots for them. for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); const TargetRegisterClass *RC = CSI[i].getRegClass(); // Check to see if this physreg must be spilled to a particular stack slot // on this target. const std::pair *FixedSlot = FixedSpillSlots; while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots && FixedSlot->first != Reg) ++FixedSlot; int FrameIdx; if (FixedSlot == FixedSpillSlots+NumFixedSpillSlots) { // Nope, just spill it anywhere convenient. unsigned Align = RC->getAlignment(); unsigned StackAlign = TFI->getStackAlignment(); // We may not be able to sastify the desired alignment specification of // the TargetRegisterClass if the stack alignment is smaller. Use the min. Align = std::min(Align, StackAlign); FrameIdx = FFI->CreateStackObject(RC->getSize(), Align); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; } else { // Spill it to the stack where we must. FrameIdx = FFI->CreateFixedObject(RC->getSize(), FixedSlot->second); } CSI[i].setFrameIdx(FrameIdx); } FFI->setCalleeSavedInfo(CSI); } /// saveCalleeSavedRegisters - Insert spill code for any callee saved registers /// that are modified in the function. /// void PEI::saveCalleeSavedRegisters(MachineFunction &Fn) { // Get callee saved register information. MachineFrameInfo *FFI = Fn.getFrameInfo(); const std::vector &CSI = FFI->getCalleeSavedInfo(); // Early exit if no callee saved registers are modified! if (CSI.empty()) return; const MRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); // Now that we have a stack slot for each register to be saved, insert spill // code into the entry block. MachineBasicBlock *MBB = Fn.begin(); MachineBasicBlock::iterator I = MBB->begin(); if (!RegInfo->spillCalleeSavedRegisters(*MBB, I, CSI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { // Add the callee-saved register as live-in. It's killed at the spill. MBB->addLiveIn(CSI[i].getReg()); // Insert the spill to the stack frame. RegInfo->storeRegToStackSlot(*MBB, I, CSI[i].getReg(), CSI[i].getFrameIdx(), CSI[i].getRegClass()); } } // Add code to restore the callee-save registers in each exiting block. const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); for (MachineFunction::iterator FI = Fn.begin(), E = Fn.end(); FI != E; ++FI) // If last instruction is a return instruction, add an epilogue. if (!FI->empty() && TII.isReturn(FI->back().getOpcode())) { MBB = FI; I = MBB->end(); --I; // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && TII.isTerminatorInstr((--I2)->getOpcode())) I = I2; bool AtStart = I == MBB->begin(); MachineBasicBlock::iterator BeforeI = I; if (!AtStart) --BeforeI; // Restore all registers immediately before the return and any terminators // that preceed it. if (!RegInfo->restoreCalleeSavedRegisters(*MBB, I, CSI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { RegInfo->loadRegFromStackSlot(*MBB, I, CSI[i].getReg(), CSI[i].getFrameIdx(), CSI[i].getRegClass()); assert(I != MBB->begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert multiple // instructions. if (AtStart) I = MBB->begin(); else { I = BeforeI; ++I; } } } } } /// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the /// abstract stack objects. /// void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) { const TargetFrameInfo &TFI = *Fn.getTarget().getFrameInfo(); bool StackGrowsDown = TFI.getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; // Loop over all of the stack objects, assigning sequential addresses... MachineFrameInfo *FFI = Fn.getFrameInfo(); unsigned MaxAlign = 0; // Start at the beginning of the local area. // The Offset is the distance from the stack top in the direction // of stack growth -- so it's always positive. int64_t Offset = TFI.getOffsetOfLocalArea(); if (StackGrowsDown) Offset = -Offset; assert(Offset >= 0 && "Local area offset should be in direction of stack growth"); // If there are fixed sized objects that are preallocated in the local area, // non-fixed objects can't be allocated right at the start of local area. // We currently don't support filling in holes in between fixed sized objects, // so we adjust 'Offset' to point to the end of last fixed sized // preallocated object. for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) { int64_t FixedOff; if (StackGrowsDown) { // The maximum distance from the stack pointer is at lower address of // the object -- which is given by offset. For down growing stack // the offset is negative, so we negate the offset to get the distance. FixedOff = -FFI->getObjectOffset(i); } else { // The maximum distance from the start pointer is at the upper // address of the object. FixedOff = FFI->getObjectOffset(i) + FFI->getObjectSize(i); } if (FixedOff > Offset) Offset = FixedOff; } // First assign frame offsets to stack objects that are used to spill // callee saved registers. if (StackGrowsDown) { for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) { // If stack grows down, we need to add size of find the lowest // address of the object. Offset += FFI->getObjectSize(i); unsigned Align = FFI->getObjectAlignment(i); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; FFI->setObjectOffset(i, -Offset); // Set the computed offset } } else { for (unsigned i = MaxCSFrameIndex; i >= MinCSFrameIndex; --i) { unsigned Align = FFI->getObjectAlignment(i); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; FFI->setObjectOffset(i, Offset); Offset += FFI->getObjectSize(i); } } // Make sure the special register scavenging spill slot is closest to the // frame pointer if a frame pointer is required. const MRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); if (RS && RegInfo->hasFP(Fn)) { int SFI = RS->getScavengingFrameIndex(); if (SFI >= 0) { // If stack grows down, we need to add size of the lowest // address of the object. if (StackGrowsDown) Offset += FFI->getObjectSize(SFI); unsigned Align = FFI->getObjectAlignment(SFI); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; if (StackGrowsDown) { FFI->setObjectOffset(SFI, -Offset); // Set the computed offset } else { FFI->setObjectOffset(SFI, Offset); Offset += FFI->getObjectSize(SFI); } } } // Then assign frame offsets to stack objects that are not used to spill // callee saved registers. for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) { if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && (int)i == RS->getScavengingFrameIndex()) continue; // If stack grows down, we need to add size of find the lowest // address of the object. if (StackGrowsDown) Offset += FFI->getObjectSize(i); unsigned Align = FFI->getObjectAlignment(i); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; if (StackGrowsDown) { FFI->setObjectOffset(i, -Offset); // Set the computed offset } else { FFI->setObjectOffset(i, Offset); Offset += FFI->getObjectSize(i); } } // Make sure the special register scavenging spill slot is closest to the // stack pointer. if (RS) { int SFI = RS->getScavengingFrameIndex(); if (SFI >= 0) { // If stack grows down, we need to add size of find the lowest // address of the object. if (StackGrowsDown) Offset += FFI->getObjectSize(SFI); unsigned Align = FFI->getObjectAlignment(SFI); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; if (StackGrowsDown) { FFI->setObjectOffset(SFI, -Offset); // Set the computed offset } else { FFI->setObjectOffset(SFI, Offset); Offset += FFI->getObjectSize(SFI); } } } // Round up the size to a multiple of the alignment, but only if there are // calls or alloca's in the function. This ensures that any calls to // subroutines have their stack frames suitable aligned. if (!RegInfo->targetHandlesStackFrameRounding() && (FFI->hasCalls() || FFI->hasVarSizedObjects())) { // If we have reserved argument space for call sites in the function // immediately on entry to the current function, count it as part of the // overall stack size. if (RegInfo->hasReservedCallFrame(Fn)) Offset += FFI->getMaxCallFrameSize(); unsigned AlignMask = TFI.getStackAlignment() - 1; Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); } // Update frame info to pretend that this is part of the stack... FFI->setStackSize(Offset+TFI.getOffsetOfLocalArea()); // Remember the required stack alignment in case targets need it to perform // dynamic stack alignment. assert(FFI->getMaxAlignment() == MaxAlign && "Stack alignment calculation broken!"); } /// insertPrologEpilogCode - Scan the function for modified callee saved /// registers, insert spill code for these callee saved registers, then add /// prolog and epilog code to the function. /// void PEI::insertPrologEpilogCode(MachineFunction &Fn) { // Add prologue to the function... Fn.getTarget().getRegisterInfo()->emitPrologue(Fn); // Add epilogue to restore the callee-save registers in each exiting block const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { // If last instruction is a return instruction, add an epilogue if (!I->empty() && TII.isReturn(I->back().getOpcode())) Fn.getTarget().getRegisterInfo()->emitEpilogue(Fn, *I); } } /// replaceFrameIndices - Replace all MO_FrameIndex operands with physical /// register references and actual offsets. /// void PEI::replaceFrameIndices(MachineFunction &Fn) { if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do? const TargetMachine &TM = Fn.getTarget(); assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!"); const MRegisterInfo &MRI = *TM.getRegisterInfo(); const TargetFrameInfo *TFI = TM.getFrameInfo(); bool StackGrowsDown = TFI->getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; int FrameSetupOpcode = MRI.getCallFrameSetupOpcode(); int FrameDestroyOpcode = MRI.getCallFrameDestroyOpcode(); for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { int SPAdj = 0; // SP offset due to call frame setup / destroy. if (RS) RS->enterBasicBlock(BB); for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { MachineInstr *MI = I; // Remember how much SP has been adjustment to create the call frame. if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { int Size = I->getOperand(0).getImmedValue(); if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) || (StackGrowsDown && I->getOpcode() == FrameDestroyOpcode)) Size = -Size; SPAdj += Size; MachineBasicBlock::iterator PrevI = prior(I); MRI.eliminateCallFramePseudoInstr(Fn, *BB, I); // Visit the instructions created by eliminateCallFramePseudoInstr(). I = next(PrevI); MI = NULL; } else { I++; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).isFrameIndex()) { // If this instruction has a FrameIndex operand, we need to use that // target machine register info object to eliminate it. MRI.eliminateFrameIndex(MI, SPAdj, RS); // Revisit the instruction in full. Some instructions (e.g. inline // asm instructions) can have multiple frame indices. --I; MI = 0; break; } } // Update register states. if (RS && MI) RS->forward(MI); } assert(SPAdj == 0 && "Unbalanced call frame setup / destroy pairs?"); } }