//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is responsible for finalizing the functions frame layout, saving // callee saved registers, and for emitting prolog & epilog code for the // function. // // This pass must be run after register allocation. After this pass is // executed, it is illegal to construct MO_FrameIndex operands. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pei" #include "PrologEpilogInserter.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/StackProtector.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include using namespace llvm; char PEI::ID = 0; char &llvm::PrologEpilogCodeInserterID = PEI::ID; static cl::opt WarnStackSize("warn-stack-size", cl::Hidden, cl::init((unsigned)-1), cl::desc("Warn for stack size bigger than the given" " number")); INITIALIZE_PASS_BEGIN(PEI, "prologepilog", "Prologue/Epilogue Insertion", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(StackProtector) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(PEI, "prologepilog", "Prologue/Epilogue Insertion & Frame Finalization", false, false) STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged"); STATISTIC(NumBytesStackSpace, "Number of bytes used for stack in all functions"); void PEI::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool PEI::isReturnBlock(MachineBasicBlock* MBB) { return (MBB && !MBB->empty() && MBB->back().isReturn()); } /// Compute the set of return blocks void PEI::calculateSets(MachineFunction &Fn) { // Sets used to compute spill, restore placement sets. const std::vector &CSI = Fn.getFrameInfo()->getCalleeSavedInfo(); // If no CSRs used, we are done. if (CSI.empty()) return; // Save refs to entry and return blocks. EntryBlock = Fn.begin(); for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end(); MBB != E; ++MBB) if (isReturnBlock(MBB)) ReturnBlocks.push_back(MBB); return; } /// StackObjSet - A set of stack object indexes typedef SmallSetVector StackObjSet; /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. /// bool PEI::runOnMachineFunction(MachineFunction &Fn) { const Function* F = Fn.getFunction(); const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering(); assert(!Fn.getRegInfo().getNumVirtRegs() && "Regalloc must assign all vregs"); RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL; FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn); // Calculate the MaxCallFrameSize and AdjustsStack variables for the // function's frame information. Also eliminates call frame pseudo // instructions. calculateCallsInformation(Fn); // Allow the target machine to make some adjustments to the function // e.g. UsedPhysRegs before calculateCalleeSavedRegisters. TFI->processFunctionBeforeCalleeSavedScan(Fn, RS); // Scan the function for modified callee saved registers and insert spill code // for any callee saved registers that are modified. calculateCalleeSavedRegisters(Fn); // Determine placement of CSR spill/restore code: // place all spills in the entry block, all restores in return blocks. calculateSets(Fn); // Add the code to save and restore the callee saved registers if (!F->hasFnAttribute(Attribute::Naked)) insertCSRSpillsAndRestores(Fn); // Allow the target machine to make final modifications to the function // before the frame layout is finalized. TFI->processFunctionBeforeFrameFinalized(Fn, RS); // Calculate actual frame offsets for all abstract stack objects... calculateFrameObjectOffsets(Fn); // Add prolog and epilog code to the function. This function is required // to align the stack frame as necessary for any stack variables or // called functions. Because of this, calculateCalleeSavedRegisters() // must be called before this function in order to set the AdjustsStack // and MaxCallFrameSize variables. if (!F->hasFnAttribute(Attribute::Naked)) insertPrologEpilogCode(Fn); // Replace all MO_FrameIndex operands with physical register references // and actual offsets. // replaceFrameIndices(Fn); // If register scavenging is needed, as we've enabled doing it as a // post-pass, scavenge the virtual registers that frame index elimiation // inserted. if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging) scavengeFrameVirtualRegs(Fn); // Clear any vregs created by virtual scavenging. Fn.getRegInfo().clearVirtRegs(); // Warn on stack size when we exceeds the given limit. MachineFrameInfo *MFI = Fn.getFrameInfo(); uint64_t StackSize = MFI->getStackSize(); if (WarnStackSize.getNumOccurrences() > 0 && WarnStackSize < StackSize) { DiagnosticInfoStackSize DiagStackSize(*F, StackSize); F->getContext().diagnose(DiagStackSize); } delete RS; ReturnBlocks.clear(); return true; } /// calculateCallsInformation - Calculate the MaxCallFrameSize and AdjustsStack /// variables for the function's frame information and eliminate call frame /// pseudo instructions. void PEI::calculateCallsInformation(MachineFunction &Fn) { const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering(); MachineFrameInfo *MFI = Fn.getFrameInfo(); unsigned MaxCallFrameSize = 0; bool AdjustsStack = MFI->adjustsStack(); // Get the function call frame set-up and tear-down instruction opcode int FrameSetupOpcode = TII.getCallFrameSetupOpcode(); int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); // Early exit for targets which have no call frame setup/destroy pseudo // instructions. if (FrameSetupOpcode == -1 && FrameDestroyOpcode == -1) return; std::vector FrameSDOps; for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo" " instructions should have a single immediate argument!"); unsigned Size = I->getOperand(0).getImm(); if (Size > MaxCallFrameSize) MaxCallFrameSize = Size; AdjustsStack = true; FrameSDOps.push_back(I); } else if (I->isInlineAsm()) { // Some inline asm's need a stack frame, as indicated by operand 1. unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_IsAlignStack) AdjustsStack = true; } MFI->setAdjustsStack(AdjustsStack); MFI->setMaxCallFrameSize(MaxCallFrameSize); for (std::vector::iterator i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) { MachineBasicBlock::iterator I = *i; // If call frames are not being included as part of the stack frame, and // the target doesn't indicate otherwise, remove the call frame pseudos // here. The sub/add sp instruction pairs are still inserted, but we don't // need to track the SP adjustment for frame index elimination. if (TFI->canSimplifyCallFramePseudos(Fn)) TFI->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I); } } /// calculateCalleeSavedRegisters - Scan the function for modified callee saved /// registers. void PEI::calculateCalleeSavedRegisters(MachineFunction &F) { const TargetRegisterInfo *RegInfo = F.getTarget().getRegisterInfo(); const TargetFrameLowering *TFI = F.getTarget().getFrameLowering(); MachineFrameInfo *MFI = F.getFrameInfo(); // Get the callee saved register list... const uint16_t *CSRegs = RegInfo->getCalleeSavedRegs(&F); // These are used to keep track the callee-save area. Initialize them. MinCSFrameIndex = INT_MAX; MaxCSFrameIndex = 0; // Early exit for targets which have no callee saved registers. if (CSRegs == 0 || CSRegs[0] == 0) return; // In Naked functions we aren't going to save any registers. if (F.getFunction()->hasFnAttribute(Attribute::Naked)) return; std::vector CSI; for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; // Functions which call __builtin_unwind_init get all their registers saved. if (F.getRegInfo().isPhysRegUsed(Reg) || F.getMMI().callsUnwindInit()) { // If the reg is modified, save it! CSI.push_back(CalleeSavedInfo(Reg)); } } if (CSI.empty()) return; // Early exit if no callee saved registers are modified! unsigned NumFixedSpillSlots; const TargetFrameLowering::SpillSlot *FixedSpillSlots = TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots); // Now that we know which registers need to be saved and restored, allocate // stack slots for them. for (std::vector::iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) { unsigned Reg = I->getReg(); const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); int FrameIdx; if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) { I->setFrameIdx(FrameIdx); continue; } // Check to see if this physreg must be spilled to a particular stack slot // on this target. const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots; while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots && FixedSlot->Reg != Reg) ++FixedSlot; if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) { // Nope, just spill it anywhere convenient. unsigned Align = RC->getAlignment(); unsigned StackAlign = TFI->getStackAlignment(); // We may not be able to satisfy the desired alignment specification of // the TargetRegisterClass if the stack alignment is smaller. Use the // min. Align = std::min(Align, StackAlign); FrameIdx = MFI->CreateStackObject(RC->getSize(), Align, true); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; } else { // Spill it to the stack where we must. FrameIdx = MFI->CreateFixedObject(RC->getSize(), FixedSlot->Offset, true); } I->setFrameIdx(FrameIdx); } MFI->setCalleeSavedInfo(CSI); } /// insertCSRSpillsAndRestores - Insert spill and restore code for /// callee saved registers used in the function. /// void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) { // Get callee saved register information. MachineFrameInfo *MFI = Fn.getFrameInfo(); const std::vector &CSI = MFI->getCalleeSavedInfo(); MFI->setCalleeSavedInfoValid(true); // Early exit if no callee saved registers are modified! if (CSI.empty()) return; const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering(); const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); MachineBasicBlock::iterator I; // Spill using target interface. I = EntryBlock->begin(); if (!TFI->spillCalleeSavedRegisters(*EntryBlock, I, CSI, TRI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { // Add the callee-saved register as live-in. // It's killed at the spill. EntryBlock->addLiveIn(CSI[i].getReg()); // Insert the spill to the stack frame. unsigned Reg = CSI[i].getReg(); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(*EntryBlock, I, Reg, true, CSI[i].getFrameIdx(), RC, TRI); } } // Restore using target interface. for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) { MachineBasicBlock *MBB = ReturnBlocks[ri]; I = MBB->end(); --I; // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && (--I2)->isTerminator()) I = I2; bool AtStart = I == MBB->begin(); MachineBasicBlock::iterator BeforeI = I; if (!AtStart) --BeforeI; // Restore all registers immediately before the return and any // terminators that precede it. if (!TFI->restoreCalleeSavedRegisters(*MBB, I, CSI, TRI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(*MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI); assert(I != MBB->begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert // multiple instructions. if (AtStart) I = MBB->begin(); else { I = BeforeI; ++I; } } } } } /// AdjustStackOffset - Helper function used to adjust the stack frame offset. static inline void AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx, bool StackGrowsDown, int64_t &Offset, unsigned &MaxAlign) { // If the stack grows down, add the object size to find the lowest address. if (StackGrowsDown) Offset += MFI->getObjectSize(FrameIdx); unsigned Align = MFI->getObjectAlignment(FrameIdx); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary. Offset = (Offset + Align - 1) / Align * Align; if (StackGrowsDown) { DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset << "]\n"); MFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset } else { DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset << "]\n"); MFI->setObjectOffset(FrameIdx, Offset); Offset += MFI->getObjectSize(FrameIdx); } } /// AssignProtectedObjSet - Helper function to assign large stack objects (i.e., /// those required to be close to the Stack Protector) to stack offsets. static void AssignProtectedObjSet(const StackObjSet &UnassignedObjs, SmallSet &ProtectedObjs, MachineFrameInfo *MFI, bool StackGrowsDown, int64_t &Offset, unsigned &MaxAlign) { for (StackObjSet::const_iterator I = UnassignedObjs.begin(), E = UnassignedObjs.end(); I != E; ++I) { int i = *I; AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign); ProtectedObjs.insert(i); } } /// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the /// abstract stack objects. /// void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) { const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering(); StackProtector *SP = &getAnalysis(); bool StackGrowsDown = TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; // Loop over all of the stack objects, assigning sequential addresses... MachineFrameInfo *MFI = Fn.getFrameInfo(); // Start at the beginning of the local area. // The Offset is the distance from the stack top in the direction // of stack growth -- so it's always nonnegative. int LocalAreaOffset = TFI.getOffsetOfLocalArea(); if (StackGrowsDown) LocalAreaOffset = -LocalAreaOffset; assert(LocalAreaOffset >= 0 && "Local area offset should be in direction of stack growth"); int64_t Offset = LocalAreaOffset; // If there are fixed sized objects that are preallocated in the local area, // non-fixed objects can't be allocated right at the start of local area. // We currently don't support filling in holes in between fixed sized // objects, so we adjust 'Offset' to point to the end of last fixed sized // preallocated object. for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) { int64_t FixedOff; if (StackGrowsDown) { // The maximum distance from the stack pointer is at lower address of // the object -- which is given by offset. For down growing stack // the offset is negative, so we negate the offset to get the distance. FixedOff = -MFI->getObjectOffset(i); } else { // The maximum distance from the start pointer is at the upper // address of the object. FixedOff = MFI->getObjectOffset(i) + MFI->getObjectSize(i); } if (FixedOff > Offset) Offset = FixedOff; } // First assign frame offsets to stack objects that are used to spill // callee saved registers. if (StackGrowsDown) { for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) { // If the stack grows down, we need to add the size to find the lowest // address of the object. Offset += MFI->getObjectSize(i); unsigned Align = MFI->getObjectAlignment(i); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; MFI->setObjectOffset(i, -Offset); // Set the computed offset } } else { int MaxCSFI = MaxCSFrameIndex, MinCSFI = MinCSFrameIndex; for (int i = MaxCSFI; i >= MinCSFI ; --i) { unsigned Align = MFI->getObjectAlignment(i); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; MFI->setObjectOffset(i, Offset); Offset += MFI->getObjectSize(i); } } unsigned MaxAlign = MFI->getMaxAlignment(); // Make sure the special register scavenging spill slot is closest to the // incoming stack pointer if a frame pointer is required and is closer // to the incoming rather than the final stack pointer. const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); bool EarlyScavengingSlots = (TFI.hasFP(Fn) && TFI.isFPCloseToIncomingSP() && RegInfo->useFPForScavengingIndex(Fn) && !RegInfo->needsStackRealignment(Fn)); if (RS && EarlyScavengingSlots) { SmallVector SFIs; RS->getScavengingFrameIndices(SFIs); for (SmallVectorImpl::iterator I = SFIs.begin(), IE = SFIs.end(); I != IE; ++I) AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign); } // FIXME: Once this is working, then enable flag will change to a target // check for whether the frame is large enough to want to use virtual // frame index registers. Functions which don't want/need this optimization // will continue to use the existing code path. if (MFI->getUseLocalStackAllocationBlock()) { unsigned Align = MFI->getLocalFrameMaxAlign(); // Adjust to alignment boundary. Offset = (Offset + Align - 1) / Align * Align; DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n"); // Resolve offsets for objects in the local block. for (unsigned i = 0, e = MFI->getLocalFrameObjectCount(); i != e; ++i) { std::pair Entry = MFI->getLocalFrameObjectMap(i); int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second; DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" << FIOffset << "]\n"); MFI->setObjectOffset(Entry.first, FIOffset); } // Allocate the local block Offset += MFI->getLocalFrameSize(); MaxAlign = std::max(Align, MaxAlign); } // Make sure that the stack protector comes before the local variables on the // stack. SmallSet ProtectedObjs; if (MFI->getStackProtectorIndex() >= 0) { StackObjSet LargeArrayObjs; StackObjSet SmallArrayObjs; StackObjSet AddrOfObjs; AdjustStackOffset(MFI, MFI->getStackProtectorIndex(), StackGrowsDown, Offset, MaxAlign); // Assign large stack objects first. for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) { if (MFI->isObjectPreAllocated(i) && MFI->getUseLocalStackAllocationBlock()) continue; if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && RS->isScavengingFrameIndex((int)i)) continue; if (MFI->isDeadObjectIndex(i)) continue; if (MFI->getStackProtectorIndex() == (int)i) continue; switch (SP->getSSPLayout(MFI->getObjectAllocation(i))) { case StackProtector::SSPLK_None: continue; case StackProtector::SSPLK_SmallArray: SmallArrayObjs.insert(i); continue; case StackProtector::SSPLK_AddrOf: AddrOfObjs.insert(i); continue; case StackProtector::SSPLK_LargeArray: LargeArrayObjs.insert(i); continue; } llvm_unreachable("Unexpected SSPLayoutKind."); } AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign); AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign); AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign); } // Then assign frame offsets to stack objects that are not used to spill // callee saved registers. for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) { if (MFI->isObjectPreAllocated(i) && MFI->getUseLocalStackAllocationBlock()) continue; if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && RS->isScavengingFrameIndex((int)i)) continue; if (MFI->isDeadObjectIndex(i)) continue; if (MFI->getStackProtectorIndex() == (int)i) continue; if (ProtectedObjs.count(i)) continue; AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign); } // Make sure the special register scavenging spill slot is closest to the // stack pointer. if (RS && !EarlyScavengingSlots) { SmallVector SFIs; RS->getScavengingFrameIndices(SFIs); for (SmallVectorImpl::iterator I = SFIs.begin(), IE = SFIs.end(); I != IE; ++I) AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign); } if (!TFI.targetHandlesStackFrameRounding()) { // If we have reserved argument space for call sites in the function // immediately on entry to the current function, count it as part of the // overall stack size. if (MFI->adjustsStack() && TFI.hasReservedCallFrame(Fn)) Offset += MFI->getMaxCallFrameSize(); // Round up the size to a multiple of the alignment. If the function has // any calls or alloca's, align to the target's StackAlignment value to // ensure that the callee's frame or the alloca data is suitably aligned; // otherwise, for leaf functions, align to the TransientStackAlignment // value. unsigned StackAlign; if (MFI->adjustsStack() || MFI->hasVarSizedObjects() || (RegInfo->needsStackRealignment(Fn) && MFI->getObjectIndexEnd() != 0)) StackAlign = TFI.getStackAlignment(); else StackAlign = TFI.getTransientStackAlignment(); // If the frame pointer is eliminated, all frame offsets will be relative to // SP not FP. Align to MaxAlign so this works. StackAlign = std::max(StackAlign, MaxAlign); unsigned AlignMask = StackAlign - 1; Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); } // Update frame info to pretend that this is part of the stack... int64_t StackSize = Offset - LocalAreaOffset; MFI->setStackSize(StackSize); NumBytesStackSpace += StackSize; } /// insertPrologEpilogCode - Scan the function for modified callee saved /// registers, insert spill code for these callee saved registers, then add /// prolog and epilog code to the function. /// void PEI::insertPrologEpilogCode(MachineFunction &Fn) { const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering(); // Add prologue to the function... TFI.emitPrologue(Fn); // Add epilogue to restore the callee-save registers in each exiting block for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { // If last instruction is a return instruction, add an epilogue if (!I->empty() && I->back().isReturn()) TFI.emitEpilogue(Fn, *I); } // Emit additional code that is required to support segmented stacks, if // we've been asked for it. This, when linked with a runtime with support // for segmented stacks (libgcc is one), will result in allocating stack // space in small chunks instead of one large contiguous block. if (Fn.getTarget().Options.EnableSegmentedStacks) TFI.adjustForSegmentedStacks(Fn); // Emit additional code that is required to explicitly handle the stack in // HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The // approach is rather similar to that of Segmented Stacks, but it uses a // different conditional check and another BIF for allocating more stack // space. if (Fn.getFunction()->getCallingConv() == CallingConv::HiPE) TFI.adjustForHiPEPrologue(Fn); } /// replaceFrameIndices - Replace all MO_FrameIndex operands with physical /// register references and actual offsets. /// void PEI::replaceFrameIndices(MachineFunction &Fn) { if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do? // Store SPAdj at exit of a basic block. SmallVector SPState; SPState.resize(Fn.getNumBlockIDs()); SmallPtrSet Reachable; // Iterate over the reachable blocks in DFS order. for (df_ext_iterator > DFI = df_ext_begin(&Fn, Reachable), DFE = df_ext_end(&Fn, Reachable); DFI != DFE; ++DFI) { int SPAdj = 0; // Check the exit state of the DFS stack predecessor. if (DFI.getPathLength() >= 2) { MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); assert(Reachable.count(StackPred) && "DFS stack predecessor is already visited.\n"); SPAdj = SPState[StackPred->getNumber()]; } MachineBasicBlock *BB = *DFI; replaceFrameIndices(BB, Fn, SPAdj); SPState[BB->getNumber()] = SPAdj; } // Handle the unreachable blocks. for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { if (Reachable.count(BB)) // Already handled in DFS traversal. continue; int SPAdj = 0; replaceFrameIndices(BB, Fn, SPAdj); } } void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn, int &SPAdj) { const TargetMachine &TM = Fn.getTarget(); assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!"); const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); const TargetFrameLowering *TFI = TM.getFrameLowering(); bool StackGrowsDown = TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; int FrameSetupOpcode = TII.getCallFrameSetupOpcode(); int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB); for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { // Remember how much SP has been adjusted to create the call // frame. int Size = I->getOperand(0).getImm(); if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) || (StackGrowsDown && I->getOpcode() == FrameDestroyOpcode)) Size = -Size; SPAdj += Size; MachineBasicBlock::iterator PrevI = BB->end(); if (I != BB->begin()) PrevI = prior(I); TFI->eliminateCallFramePseudoInstr(Fn, *BB, I); // Visit the instructions created by eliminateCallFramePseudoInstr(). if (PrevI == BB->end()) I = BB->begin(); // The replaced instr was the first in the block. else I = llvm::next(PrevI); continue; } MachineInstr *MI = I; bool DoIncr = true; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { if (!MI->getOperand(i).isFI()) continue; // Frame indicies in debug values are encoded in a target independent // way with simply the frame index and offset rather than any // target-specific addressing mode. if (MI->isDebugValue() || MI->getOpcode() == TargetOpcode::STACKMAP || MI->getOpcode() == TargetOpcode::PATCHPOINT) { assert((!MI->isDebugValue() || i == 0) && "Frame indicies can only appear as the first operand of a " "DBG_VALUE machine instruction"); unsigned Reg; MachineOperand &Offset = MI->getOperand(i + 1); Offset.setImm(Offset.getImm() + TFI->getFrameIndexReference( Fn, MI->getOperand(i).getIndex(), Reg)); MI->getOperand(i).ChangeToRegister(Reg, false /*isDef*/); continue; } // Some instructions (e.g. inline asm instructions) can have // multiple frame indices and/or cause eliminateFrameIndex // to insert more than one instruction. We need the register // scavenger to go through all of these instructions so that // it can update its register information. We keep the // iterator at the point before insertion so that we can // revisit them in full. bool AtBeginning = (I == BB->begin()); if (!AtBeginning) --I; // If this instruction has a FrameIndex operand, we need to // use that target machine register info object to eliminate // it. TRI.eliminateFrameIndex(MI, SPAdj, i, FrameIndexVirtualScavenging ? NULL : RS); // Reset the iterator if we were at the beginning of the BB. if (AtBeginning) { I = BB->begin(); DoIncr = false; } MI = 0; break; } if (DoIncr && I != BB->end()) ++I; // Update register states. if (RS && !FrameIndexVirtualScavenging && MI) RS->forward(MI); } } /// scavengeFrameVirtualRegs - Replace all frame index virtual registers /// with physical registers. Use the register scavenger to find an /// appropriate register to use. /// /// FIXME: Iterating over the instruction stream is unnecessary. We can simply /// iterate over the vreg use list, which at this point only contains machine /// operands for which eliminateFrameIndex need a new scratch reg. void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) { // Run through the instructions and find any virtual registers. for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { RS->enterBasicBlock(BB); int SPAdj = 0; // The instruction stream may change in the loop, so check BB->end() // directly. for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { // We might end up here again with a NULL iterator if we scavenged a // register for which we inserted spill code for definition by what was // originally the first instruction in BB. if (I == MachineBasicBlock::iterator(NULL)) I = BB->begin(); MachineInstr *MI = I; MachineBasicBlock::iterator J = llvm::next(I); MachineBasicBlock::iterator P = I == BB->begin() ? MachineBasicBlock::iterator(NULL) : llvm::prior(I); // RS should process this instruction before we might scavenge at this // location. This is because we might be replacing a virtual register // defined by this instruction, and if so, registers killed by this // instruction are available, and defined registers are not. RS->forward(I); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { if (MI->getOperand(i).isReg()) { MachineOperand &MO = MI->getOperand(i); unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; // When we first encounter a new virtual register, it // must be a definition. assert(MI->getOperand(i).isDef() && "frame index virtual missing def!"); // Scavenge a new scratch register const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(Reg); unsigned ScratchReg = RS->scavengeRegister(RC, J, SPAdj); ++NumScavengedRegs; // Replace this reference to the virtual register with the // scratch register. assert (ScratchReg && "Missing scratch register!"); Fn.getRegInfo().replaceRegWith(Reg, ScratchReg); // Because this instruction was processed by the RS before this // register was allocated, make sure that the RS now records the // register as being used. RS->setUsed(ScratchReg); } } // If the scavenger needed to use one of its spill slots, the // spill code will have been inserted in between I and J. This is a // problem because we need the spill code before I: Move I to just // prior to J. if (I != llvm::prior(J)) { BB->splice(J, BB, I); // Before we move I, we need to prepare the RS to visit I again. // Specifically, RS will assert if it sees uses of registers that // it believes are undefined. Because we have already processed // register kills in I, when it visits I again, it will believe that // those registers are undefined. To avoid this situation, unprocess // the instruction I. assert(RS->getCurrentPosition() == I && "The register scavenger has an unexpected position"); I = P; RS->unprocess(P); } else ++I; } } }