//===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the RABigBlock class // //===----------------------------------------------------------------------===// // This register allocator is derived from RegAllocLocal.cpp. Like it, this // allocator works on one basic block at a time, oblivious to others. // However, the algorithm used here is suited for long blocks of // instructions - registers are spilled by greedily choosing those holding // values that will not be needed for the longest amount of time. This works // particularly well for blocks with 10 or more times as many instructions // as machine registers, but can be used for general code. // //===----------------------------------------------------------------------===// // // TODO: - automagically invoke linearscan for (groups of) small BBs? // - break ties when picking regs? (probably not worth it in a // JIT context) // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/BasicBlock.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; STATISTIC(NumStores, "Number of stores added"); STATISTIC(NumLoads , "Number of loads added"); STATISTIC(NumFolded, "Number of loads/stores folded into instructions"); static RegisterRegAlloc bigBlockRegAlloc("bigblock", " Big-block register allocator", createBigBlockRegisterAllocator); namespace { /// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap /// keys. struct VRegKeyInfo { static inline unsigned getEmptyKey() { return -1U; } static inline unsigned getTombstoneKey() { return -2U; } static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; } static unsigned getHashValue(const unsigned &Key) { return Key; } }; /// This register allocator is derived from RegAllocLocal.cpp. Like it, this /// allocator works on one basic block at a time, oblivious to others. /// However, the algorithm used here is suited for long blocks of /// instructions - registers are spilled by greedily choosing those holding /// values that will not be needed for the longest amount of time. This works /// particularly well for blocks with 10 or more times as many instructions /// as machine registers, but can be used for general code. /// /// TODO: - automagically invoke linearscan for (groups of) small BBs? /// - break ties when picking regs? (probably not worth it in a /// JIT context) /// class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass { public: static char ID; RABigBlock() : MachineFunctionPass(&ID) {} private: /// TM - For getting at TargetMachine info /// const TargetMachine *TM; /// MF - Our generic MachineFunction pointer /// MachineFunction *MF; /// RegInfo - For dealing with machine register info (aliases, folds /// etc) const TargetRegisterInfo *RegInfo; typedef SmallVector VRegTimes; /// VRegReadTable - maps VRegs in a BB to the set of times they are read /// DenseMap VRegReadTable; /// VRegReadIdx - keeps track of the "current time" in terms of /// positions in VRegReadTable DenseMap VRegReadIdx; /// StackSlotForVirtReg - Maps virtual regs to the frame index where these /// values are spilled. IndexedMap StackSlotForVirtReg; /// Virt2PhysRegMap - This map contains entries for each virtual register /// that is currently available in a physical register. IndexedMap Virt2PhysRegMap; /// PhysRegsUsed - This array is effectively a map, containing entries for /// each physical register that currently has a value (ie, it is in /// Virt2PhysRegMap). The value mapped to is the virtual register /// corresponding to the physical register (the inverse of the /// Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned /// because it is used by a future instruction, and to -2 if it is not /// allocatable. If the entry for a physical register is -1, then the /// physical register is "not in the map". /// std::vector PhysRegsUsed; /// VirtRegModified - This bitset contains information about which virtual /// registers need to be spilled back to memory when their registers are /// scavenged. If a virtual register has simply been rematerialized, there /// is no reason to spill it to memory when we need the register back. /// std::vector VirtRegModified; /// MBBLastInsnTime - the number of the the last instruction in MBB /// int MBBLastInsnTime; /// MBBCurTime - the number of the the instruction being currently processed /// int MBBCurTime; unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { return Virt2PhysRegMap[VirtReg]; } unsigned &getVirt2StackSlot(unsigned VirtReg) { return StackSlotForVirtReg[VirtReg]; } /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset /// void markVirtRegModified(unsigned Reg, bool Val = true) { assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); Reg -= TargetRegisterInfo::FirstVirtualRegister; if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1); VirtRegModified[Reg] = Val; } /// isVirtRegModified - Lets us query the VirtRegModified bitset /// bool isVirtRegModified(unsigned Reg) const { assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size() && "Illegal virtual register!"); return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; } public: /// getPassName - returns the BigBlock allocator's name /// virtual const char *getPassName() const { return "BigBlock Register Allocator"; } /// getAnalaysisUsage - declares the required analyses /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PHIEliminationID); AU.addRequiredID(TwoAddressInstructionPassID); MachineFunctionPass::getAnalysisUsage(AU); } private: /// runOnMachineFunction - Register allocate the whole function /// bool runOnMachineFunction(MachineFunction &Fn); /// AllocateBasicBlock - Register allocate the specified basic block. /// void AllocateBasicBlock(MachineBasicBlock &MBB); /// FillVRegReadTable - Fill out the table of vreg read times given a BB /// void FillVRegReadTable(MachineBasicBlock &MBB); /// areRegsEqual - This method returns true if the specified registers are /// related to each other. To do this, it checks to see if they are equal /// or if the first register is in the alias set of the second register. /// bool areRegsEqual(unsigned R1, unsigned R2) const { if (R1 == R2) return true; for (const unsigned *AliasSet = RegInfo->getAliasSet(R2); *AliasSet; ++AliasSet) { if (*AliasSet == R1) return true; } return false; } /// getStackSpaceFor - This returns the frame index of the specified virtual /// register on the stack, allocating space if necessary. int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); /// removePhysReg - This method marks the specified physical register as no /// longer being in use. /// void removePhysReg(unsigned PhysReg); /// spillVirtReg - This method spills the value specified by PhysReg into /// the virtual register slot specified by VirtReg. It then updates the RA /// data structures to indicate the fact that PhysReg is now available. /// void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned VirtReg, unsigned PhysReg); /// spillPhysReg - This method spills the specified physical register into /// the virtual register slot associated with it. If OnlyVirtRegs is set to /// true, then the request is ignored if the physical register does not /// contain a virtual register. /// void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, unsigned PhysReg, bool OnlyVirtRegs = false); /// assignVirtToPhysReg - This method updates local state so that we know /// that PhysReg is the proper container for VirtReg now. The physical /// register must not be used for anything else when this is called. /// void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); /// isPhysRegAvailable - Return true if the specified physical register is /// free and available for use. This also includes checking to see if /// aliased registers are all free... /// bool isPhysRegAvailable(unsigned PhysReg) const; /// getFreeReg - Look to see if there is a free register available in the /// specified register class. If not, return 0. /// unsigned getFreeReg(const TargetRegisterClass *RC); /// chooseReg - Pick a physical register to hold the specified /// virtual register by choosing the one which will be read furthest /// in the future. /// unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI, unsigned VirtReg); /// reloadVirtReg - This method transforms the specified specified virtual /// register use to refer to a physical register. This method may do this /// in one of several ways: if the register is available in a physical /// register already, it uses that physical register. If the value is not /// in a physical register, and if there are physical registers available, /// it loads it into a register. If register pressure is high, and it is /// possible, it tries to fold the load of the virtual register into the /// instruction itself. It avoids doing this if register pressure is low to /// improve the chance that subsequent instructions can use the reloaded /// value. This method returns the modified instruction. /// MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, unsigned OpNum); }; char RABigBlock::ID = 0; } /// getStackSpaceFor - This allocates space for the specified virtual register /// to be held on the stack. int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { // Find the location Reg would belong... int FrameIdx = getVirt2StackSlot(VirtReg); if (FrameIdx) return FrameIdx - 1; // Already has space allocated? // Allocate a new stack object for this spill location... FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(), RC->getAlignment()); // Assign the slot... getVirt2StackSlot(VirtReg) = FrameIdx + 1; return FrameIdx; } /// removePhysReg - This method marks the specified physical register as no /// longer being in use. /// void RABigBlock::removePhysReg(unsigned PhysReg) { PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used } /// spillVirtReg - This method spills the value specified by PhysReg into the /// virtual register slot specified by VirtReg. It then updates the RA data /// structures to indicate the fact that PhysReg is now available. /// void RABigBlock::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg) { assert(VirtReg && "Spilling a physical register is illegal!" " Must not have appropriate kill for the register or use exists beyond" " the intended one."); DOUT << " Spilling register " << RegInfo->getName(PhysReg) << " containing %reg" << VirtReg; const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); if (!isVirtRegModified(VirtReg)) DOUT << " which has not been modified, so no store necessary!"; // Otherwise, there is a virtual register corresponding to this physical // register. We only need to spill it into its stack slot if it has been // modified. if (isVirtRegModified(VirtReg)) { const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); int FrameIndex = getStackSpaceFor(VirtReg, RC); DOUT << " to stack slot #" << FrameIndex; TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC); ++NumStores; // Update statistics } getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available DOUT << "\n"; removePhysReg(PhysReg); } /// spillPhysReg - This method spills the specified physical register into the /// virtual register slot associated with it. If OnlyVirtRegs is set to true, /// then the request is ignored if the physical register does not contain a /// virtual register. /// void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, unsigned PhysReg, bool OnlyVirtRegs) { if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used! assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); } else { // If the selected register aliases any other registers, we must make // sure that one of the aliases isn't alive. for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); *AliasSet; ++AliasSet) if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register. PhysRegsUsed[*AliasSet] != -2) // If allocatable. if (PhysRegsUsed[*AliasSet]) spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); } } /// assignVirtToPhysReg - This method updates local state so that we know /// that PhysReg is the proper container for VirtReg now. The physical /// register must not be used for anything else when this is called. /// void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); // Update information to note the fact that this register was just used, and // it holds VirtReg. PhysRegsUsed[PhysReg] = VirtReg; getVirt2PhysRegMapSlot(VirtReg) = PhysReg; } /// isPhysRegAvailable - Return true if the specified physical register is free /// and available for use. This also includes checking to see if aliased /// registers are all free... /// bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const { if (PhysRegsUsed[PhysReg] != -1) return false; // If the selected register aliases any other allocated registers, it is // not free! for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); *AliasSet; ++AliasSet) if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? return false; // Can't use this reg then. return true; } /// getFreeReg - Look to see if there is a free register available in the /// specified register class. If not, return 0. /// unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) { // Get iterators defining the range of registers that are valid to allocate in // this class, which also specifies the preferred allocation order. TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); for (; RI != RE; ++RI) if (isPhysRegAvailable(*RI)) { // Is reg unused? assert(*RI != 0 && "Cannot use register!"); return *RI; // Found an unused register! } return 0; } /// chooseReg - Pick a physical register to hold the specified /// virtual register by choosing the one whose value will be read /// furthest in the future. /// unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I, unsigned VirtReg) { const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); // First check to see if we have a free register of the requested type... unsigned PhysReg = getFreeReg(RC); // If we didn't find an unused register, find the one which will be // read at the most distant point in time. if (PhysReg == 0) { unsigned delay=0, longest_delay=0; VRegTimes* ReadTimes; unsigned curTime = MBBCurTime; // for all physical regs in the RC, for(TargetRegisterClass::iterator pReg = RC->begin(); pReg != RC->end(); ++pReg) { // how long until they're read? if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]]; if(ReadTimes && !ReadTimes->empty()) { unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]]; while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) { ++pt; } if(pt < ReadTimes->size()) delay = (*ReadTimes)[pt] - curTime; else delay = MBBLastInsnTime + 1 - curTime; } else { // This register is only defined, but never // read in this MBB. Therefore the next read // happens after the end of this MBB delay = MBBLastInsnTime + 1 - curTime; } if(delay > longest_delay) { longest_delay = delay; PhysReg = *pReg; } } } if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose // a register to spill by looking through the // read timetable, so now we just spill the // first allocatable register we find. // for all physical regs in the RC, for(TargetRegisterClass::iterator pReg = RC->begin(); pReg != RC->end(); ++pReg) { // if we find a register we can spill if(PhysRegsUsed[*pReg]>=-1) PhysReg = *pReg; // choose it to be spilled } } assert(PhysReg && "couldn't choose a register to spill :( "); // TODO: assert that RC->contains(PhysReg) / handle aliased registers? // since we needed to look in the table we need to spill this register. spillPhysReg(MBB, I, PhysReg); } // assign the vreg to our chosen physical register assignVirtToPhysReg(VirtReg, PhysReg); return PhysReg; // and return it } /// reloadVirtReg - This method transforms an instruction with a virtual /// register use to one that references a physical register. It does this as /// follows: /// /// 1) If the register is already in a physical register, it uses it. /// 2) Otherwise, if there is a free physical register, it uses that. /// 3) Otherwise, it calls chooseReg() to get the physical register /// holding the most distantly needed value, generating a spill in /// the process. /// /// This method returns the modified instruction. MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, unsigned OpNum) { unsigned VirtReg = MI->getOperand(OpNum).getReg(); const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo(); // If the virtual register is already available in a physical register, // just update the instruction and return. if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { MI->getOperand(OpNum).setReg(PR); return MI; } // Otherwise, if we have free physical registers available to hold the // value, use them. const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); unsigned PhysReg = getFreeReg(RC); int FrameIndex = getStackSpaceFor(VirtReg, RC); if (PhysReg) { // we have a free register, so use it. assignVirtToPhysReg(VirtReg, PhysReg); } else { // no free registers available. // try to fold the spill into the instruction SmallVector Ops; Ops.push_back(OpNum); if(MachineInstr* FMI = TII->foldMemoryOperand(*MF, MI, Ops, FrameIndex)) { ++NumFolded; FMI->copyKillDeadInfo(MI); return MBB.insert(MBB.erase(MI), FMI); } // determine which of the physical registers we'll kill off, since we // couldn't fold. PhysReg = chooseReg(MBB, MI, VirtReg); } // this virtual register is now unmodified (since we just reloaded it) markVirtRegModified(VirtReg, false); DOUT << " Reloading %reg" << VirtReg << " into " << RegInfo->getName(PhysReg) << "\n"; // Add move instruction(s) TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); ++NumLoads; // Update statistics MF->getRegInfo().setPhysRegUsed(PhysReg); MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register return MI; } /// Fill out the vreg read timetable. Since ReadTime increases /// monotonically, the individual readtime sets will be sorted /// in ascending order. void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) { // loop over each instruction MachineBasicBlock::iterator MII; unsigned ReadTime; for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) { MachineInstr *MI = MII; for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& MO = MI->getOperand(i); // look for vreg reads.. if (MO.isRegister() && !MO.isDef() && MO.getReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { // ..and add them to the read table. VRegTimes* &Times = VRegReadTable[MO.getReg()]; if(!VRegReadTable[MO.getReg()]) { Times = new VRegTimes; VRegReadIdx[MO.getReg()] = 0; } Times->push_back(ReadTime); } } } MBBLastInsnTime = ReadTime; for(DenseMap::iterator Reads = VRegReadTable.begin(); Reads != VRegReadTable.end(); ++Reads) { if(Reads->second) { DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n"; } } } /// isReadModWriteImplicitKill - True if this is an implicit kill for a /// read/mod/write register, i.e. update partial register. static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() && MO.isDef() && !MO.isDead()) return true; } return false; } /// isReadModWriteImplicitDef - True if this is an implicit def for a /// read/mod/write register, i.e. update partial register. static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() && !MO.isDef() && MO.isKill()) return true; } return false; } void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) { // loop over each instruction MachineBasicBlock::iterator MII = MBB.begin(); const TargetInstrInfo &TII = *TM->getInstrInfo(); DEBUG(const BasicBlock *LBB = MBB.getBasicBlock(); if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName()); // If this is the first basic block in the machine function, add live-in // registers as active. if (&MBB == &*MF->begin()) { for (MachineRegisterInfo::livein_iterator I = MF->getRegInfo().livein_begin(), E = MF->getRegInfo().livein_end(); I != E; ++I) { unsigned Reg = I->first; MF->getRegInfo().setPhysRegUsed(Reg); PhysRegsUsed[Reg] = 0; // It is free and reserved now for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); *AliasSet; ++AliasSet) { if (PhysRegsUsed[*AliasSet] != -2) { PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now MF->getRegInfo().setPhysRegUsed(*AliasSet); } } } } // Otherwise, sequentially allocate each instruction in the MBB. MBBCurTime = -1; while (MII != MBB.end()) { MachineInstr *MI = MII++; MBBCurTime++; const TargetInstrDesc &TID = MI->getDesc(); DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI; DOUT << " Regs have values: "; for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i) if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) DOUT << "[" << RegInfo->getName(i) << ",%reg" << PhysRegsUsed[i] << "] "; DOUT << "\n"); SmallVector Kills; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isRegister() && MO.isKill()) { if (!MO.isImplicit()) Kills.push_back(MO.getReg()); else if (!isReadModWriteImplicitKill(MI, MO.getReg())) // These are extra physical register kills when a sub-register // is defined (def of a sub-register is a read/mod/write of the // larger registers). Ignore. Kills.push_back(MO.getReg()); } } // Get the used operands into registers. This has the potential to spill // incoming values if we are out of registers. Note that we completely // ignore physical register uses here. We assume that if an explicit // physical register is referenced by the instruction, that it is guaranteed // to be live-in, or the input is badly hosed. // for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& MO = MI->getOperand(i); // here we are looking for only used operands (never def&use) if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) MI = reloadVirtReg(MBB, MI, i); } // If this instruction is the last user of this register, kill the // value, freeing the register being used, so it doesn't need to be // spilled to memory. // for (unsigned i = 0, e = Kills.size(); i != e; ++i) { unsigned VirtReg = Kills[i]; unsigned PhysReg = VirtReg; if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { // If the virtual register was never materialized into a register, it // might not be in the map, but it won't hurt to zero it out anyway. unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); PhysReg = PhysRegSlot; PhysRegSlot = 0; } else if (PhysRegsUsed[PhysReg] == -2) { // Unallocatable register dead, ignore. continue; } else { assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && "Silently clearing a virtual register?"); } if (PhysReg) { DOUT << " Last use of " << RegInfo->getName(PhysReg) << "[%reg" << VirtReg <<"], removing it from live set\n"; removePhysReg(PhysReg); for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg); *AliasSet; ++AliasSet) { if (PhysRegsUsed[*AliasSet] != -2) { DOUT << " Last use of " << RegInfo->getName(*AliasSet) << "[%reg" << VirtReg <<"], removing it from live set\n"; removePhysReg(*AliasSet); } } } } // Loop over all of the operands of the instruction, spilling registers that // are defined, and marking explicit destinations in the PhysRegsUsed map. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { unsigned Reg = MO.getReg(); if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. // These are extra physical register defs when a sub-register // is defined (def of a sub-register is a read/mod/write of the // larger registers). Ignore. if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; MF->getRegInfo().setPhysRegUsed(Reg); spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg PhysRegsUsed[Reg] = 0; // It is free and reserved now for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); *AliasSet; ++AliasSet) { if (PhysRegsUsed[*AliasSet] != -2) { PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now MF->getRegInfo().setPhysRegUsed(*AliasSet); } } } } // Loop over the implicit defs, spilling them as well. if (TID.getImplicitDefs()) { for (const unsigned *ImplicitDefs = TID.getImplicitDefs(); *ImplicitDefs; ++ImplicitDefs) { unsigned Reg = *ImplicitDefs; if (PhysRegsUsed[Reg] != -2) { spillPhysReg(MBB, MI, Reg, true); PhysRegsUsed[Reg] = 0; // It is free and reserved now } MF->getRegInfo().setPhysRegUsed(Reg); for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); *AliasSet; ++AliasSet) { if (PhysRegsUsed[*AliasSet] != -2) { PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now MF->getRegInfo().setPhysRegUsed(*AliasSet); } } } } SmallVector DeadDefs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isRegister() && MO.isDead()) DeadDefs.push_back(MO.getReg()); } // Okay, we have allocated all of the source operands and spilled any values // that would be destroyed by defs of this instruction. Loop over the // explicit defs and assign them to a register, spilling incoming values if // we need to scavenge a register. // for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isRegister() && MO.isDef() && MO.getReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned DestVirtReg = MO.getReg(); unsigned DestPhysReg; // If DestVirtReg already has a value, use it. if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) DestPhysReg = chooseReg(MBB, MI, DestVirtReg); MF->getRegInfo().setPhysRegUsed(DestPhysReg); markVirtRegModified(DestVirtReg); MI->getOperand(i).setReg(DestPhysReg); // Assign the output register } } // If this instruction defines any registers that are immediately dead, // kill them now. // for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { unsigned VirtReg = DeadDefs[i]; unsigned PhysReg = VirtReg; if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); PhysReg = PhysRegSlot; assert(PhysReg != 0); PhysRegSlot = 0; } else if (PhysRegsUsed[PhysReg] == -2) { // Unallocatable register dead, ignore. continue; } if (PhysReg) { DOUT << " Register " << RegInfo->getName(PhysReg) << " [%reg" << VirtReg << "] is never used, removing it frame live list\n"; removePhysReg(PhysReg); for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); *AliasSet; ++AliasSet) { if (PhysRegsUsed[*AliasSet] != -2) { DOUT << " Register " << RegInfo->getName(*AliasSet) << " [%reg" << *AliasSet << "] is never used, removing it frame live list\n"; removePhysReg(*AliasSet); } } } } // Finally, if this is a noop copy instruction, zap it. unsigned SrcReg, DstReg; if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) MBB.erase(MI); } MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); // Spill all physical registers holding virtual registers now. for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { if (unsigned VirtReg = PhysRegsUsed[i]) spillVirtReg(MBB, MI, VirtReg, i); else removePhysReg(i); } } /// runOnMachineFunction - Register allocate the whole function /// bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) { DOUT << "Machine Function " << "\n"; MF = &Fn; TM = &Fn.getTarget(); RegInfo = TM->getRegisterInfo(); PhysRegsUsed.assign(RegInfo->getNumRegs(), -1); // At various places we want to efficiently check to see whether a register // is allocatable. To handle this, we mark all unallocatable registers as // being pinned down, permanently. { BitVector Allocable = RegInfo->getAllocatableSet(Fn); for (unsigned i = 0, e = Allocable.size(); i != e; ++i) if (!Allocable[i]) PhysRegsUsed[i] = -2; // Mark the reg unallocable. } // initialize the virtual->physical register map to have a 'null' // mapping for all virtual registers Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg()); StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg()); VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() - TargetRegisterInfo::FirstVirtualRegister + 1, 0); // Loop over all of the basic blocks, eliminating virtual register references for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { // fill out the read timetable FillVRegReadTable(*MBB); // use it to allocate the BB AllocateBasicBlock(*MBB); // clear it VRegReadTable.clear(); } StackSlotForVirtReg.clear(); PhysRegsUsed.clear(); VirtRegModified.clear(); Virt2PhysRegMap.clear(); return true; } FunctionPass *llvm::createBigBlockRegisterAllocator() { return new RABigBlock(); }