//===-- RegisterClassInfo.cpp - Dynamic Register Class Info ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the RegisterClassInfo class which provides dynamic // information about target register classes. Callee-saved vs. caller-saved and // reserved registers depend on calling conventions and other dynamic // information, so some things cannot be determined statically. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "regalloc" static cl::opt StressRA("stress-regalloc", cl::Hidden, cl::init(0), cl::value_desc("N"), cl::desc("Limit all regclasses to N registers")); RegisterClassInfo::RegisterClassInfo() : Tag(0), MF(nullptr), TRI(nullptr), CalleeSaved(nullptr) {} void RegisterClassInfo::runOnMachineFunction(const MachineFunction &mf) { bool Update = false; MF = &mf; // Allocate new array the first time we see a new target. if (MF->getTarget().getRegisterInfo() != TRI) { TRI = MF->getTarget().getRegisterInfo(); RegClass.reset(new RCInfo[TRI->getNumRegClasses()]); unsigned NumPSets = TRI->getNumRegPressureSets(); PSetLimits.reset(new unsigned[NumPSets]); std::fill(&PSetLimits[0], &PSetLimits[NumPSets], 0); Update = true; } // Does this MF have different CSRs? const MCPhysReg *CSR = TRI->getCalleeSavedRegs(MF); if (Update || CSR != CalleeSaved) { // Build a CSRNum map. Every CSR alias gets an entry pointing to the last // overlapping CSR. CSRNum.clear(); CSRNum.resize(TRI->getNumRegs(), 0); for (unsigned N = 0; unsigned Reg = CSR[N]; ++N) for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) CSRNum[*AI] = N + 1; // 0 means no CSR, 1 means CalleeSaved[0], ... Update = true; } CalleeSaved = CSR; // Different reserved registers? const BitVector &RR = MF->getRegInfo().getReservedRegs(); if (Reserved.size() != RR.size() || RR != Reserved) { Update = true; Reserved = RR; } // Invalidate cached information from previous function. if (Update) ++Tag; } /// compute - Compute the preferred allocation order for RC with reserved /// registers filtered out. Volatile registers come first followed by CSR /// aliases ordered according to the CSR order specified by the target. void RegisterClassInfo::compute(const TargetRegisterClass *RC) const { RCInfo &RCI = RegClass[RC->getID()]; // Raw register count, including all reserved regs. unsigned NumRegs = RC->getNumRegs(); if (!RCI.Order) RCI.Order.reset(new MCPhysReg[NumRegs]); unsigned N = 0; SmallVector CSRAlias; unsigned MinCost = 0xff; unsigned LastCost = ~0u; unsigned LastCostChange = 0; // FIXME: Once targets reserve registers instead of removing them from the // allocation order, we can simply use begin/end here. ArrayRef RawOrder = RC->getRawAllocationOrder(*MF); for (unsigned i = 0; i != RawOrder.size(); ++i) { unsigned PhysReg = RawOrder[i]; // Remove reserved registers from the allocation order. if (Reserved.test(PhysReg)) continue; unsigned Cost = TRI->getCostPerUse(PhysReg); MinCost = std::min(MinCost, Cost); if (CSRNum[PhysReg]) // PhysReg aliases a CSR, save it for later. CSRAlias.push_back(PhysReg); else { if (Cost != LastCost) LastCostChange = N; RCI.Order[N++] = PhysReg; LastCost = Cost; } } RCI.NumRegs = N + CSRAlias.size(); assert (RCI.NumRegs <= NumRegs && "Allocation order larger than regclass"); // CSR aliases go after the volatile registers, preserve the target's order. for (unsigned i = 0, e = CSRAlias.size(); i != e; ++i) { unsigned PhysReg = CSRAlias[i]; unsigned Cost = TRI->getCostPerUse(PhysReg); if (Cost != LastCost) LastCostChange = N; RCI.Order[N++] = PhysReg; LastCost = Cost; } // Register allocator stress test. Clip register class to N registers. if (StressRA && RCI.NumRegs > StressRA) RCI.NumRegs = StressRA; // Check if RC is a proper sub-class. if (const TargetRegisterClass *Super = TRI->getLargestLegalSuperClass(RC)) if (Super != RC && getNumAllocatableRegs(Super) > RCI.NumRegs) RCI.ProperSubClass = true; RCI.MinCost = uint8_t(MinCost); RCI.LastCostChange = LastCostChange; DEBUG({ dbgs() << "AllocationOrder(" << RC->getName() << ") = ["; for (unsigned I = 0; I != RCI.NumRegs; ++I) dbgs() << ' ' << PrintReg(RCI.Order[I], TRI); dbgs() << (RCI.ProperSubClass ? " ] (sub-class)\n" : " ]\n"); }); // RCI is now up-to-date. RCI.Tag = Tag; } /// This is not accurate because two overlapping register sets may have some /// nonoverlapping reserved registers. However, computing the allocation order /// for all register classes would be too expensive. unsigned RegisterClassInfo::computePSetLimit(unsigned Idx) const { const TargetRegisterClass *RC = nullptr; unsigned NumRCUnits = 0; for (TargetRegisterInfo::regclass_iterator RI = TRI->regclass_begin(), RE = TRI->regclass_end(); RI != RE; ++RI) { const int *PSetID = TRI->getRegClassPressureSets(*RI); for (; *PSetID != -1; ++PSetID) { if ((unsigned)*PSetID == Idx) break; } if (*PSetID == -1) continue; // Found a register class that counts against this pressure set. // For efficiency, only compute the set order for the largest set. unsigned NUnits = TRI->getRegClassWeight(*RI).WeightLimit; if (!RC || NUnits > NumRCUnits) { RC = *RI; NumRCUnits = NUnits; } } compute(RC); unsigned NReserved = RC->getNumRegs() - getNumAllocatableRegs(RC); return TRI->getRegPressureSetLimit(Idx) - TRI->getRegClassWeight(RC).RegWeight * NReserved; }