//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the generic RegisterCoalescer interface which // is used as the common interface used by all clients and // implementations of register coalescing. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "RegisterCoalescer.h" #include "LiveDebugVariables.h" #include "RegisterClassInfo.h" #include "VirtRegMap.h" #include "llvm/Pass.h" #include "llvm/Value.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; STATISTIC(numJoins , "Number of interval joins performed"); STATISTIC(numCrossRCs , "Number of cross class joins performed"); STATISTIC(numCommutes , "Number of instruction commuting performed"); STATISTIC(numExtends , "Number of copies extended"); STATISTIC(NumReMats , "Number of instructions re-materialized"); STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); STATISTIC(NumInflated , "Number of register classes inflated"); static cl::opt EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true)); static cl::opt VerifyCoalescing("verify-coalescing", cl::desc("Verify machine instrs before and after register coalescing"), cl::Hidden); namespace { class RegisterCoalescer : public MachineFunctionPass { MachineFunction* MF; MachineRegisterInfo* MRI; const TargetMachine* TM; const TargetRegisterInfo* TRI; const TargetInstrInfo* TII; LiveIntervals *LIS; LiveDebugVariables *LDV; const MachineLoopInfo* Loops; AliasAnalysis *AA; RegisterClassInfo RegClassInfo; /// JoinedCopies - Keep track of copies eliminated due to coalescing. /// SmallPtrSet JoinedCopies; /// ReMatCopies - Keep track of copies eliminated due to remat. /// SmallPtrSet ReMatCopies; /// ReMatDefs - Keep track of definition instructions which have /// been remat'ed. SmallPtrSet ReMatDefs; /// joinAllIntervals - join compatible live intervals void joinAllIntervals(); /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting /// copies that cannot yet be coalesced into the "TryAgain" list. void copyCoalesceInMBB(MachineBasicBlock *MBB, std::vector &TryAgain); /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, /// which are the src/dst of the copy instruction CopyMI. This returns /// true if the copy was successfully coalesced away. If it is not /// currently possible to coalesce this interval, but it may be possible if /// other things get coalesced, then it returns true by reference in /// 'Again'. bool joinCopy(MachineInstr *TheCopy, bool &Again); /// joinIntervals - Attempt to join these two intervals. On failure, this /// returns false. The output "SrcInt" will not have been modified, so we /// can use this information below to update aliases. bool joinIntervals(CoalescerPair &CP); /// Attempt joining with a reserved physreg. bool joinReservedPhysReg(CoalescerPair &CP); /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If /// the source value number is defined by a copy from the destination reg /// see if we can merge these two destination reg valno# into a single /// value number, eliminating a copy. bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); /// hasOtherReachingDefs - Return true if there are definitions of IntB /// other than BValNo val# that can reach uses of AValno val# of IntA. bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, VNInfo *AValNo, VNInfo *BValNo); /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy. /// If the source value number is defined by a commutable instruction and /// its other operand is coalesced to the copy dest register, see if we /// can transform the copy into a noop by commuting the definition. bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); /// reMaterializeTrivialDef - If the source of a copy is defined by a /// trivial computation, replace the copy by rematerialize the definition. /// If PreserveSrcInt is true, make sure SrcInt is valid after the call. bool reMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt, unsigned DstReg, MachineInstr *CopyMI); /// canJoinPhys - Return true if a physreg copy should be joined. bool canJoinPhys(CoalescerPair &CP); /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and /// update the subregister number if it is not zero. If DstReg is a /// physical register and the existing subregister number of the def / use /// being updated is not zero, make sure to set it to the correct physical /// subregister. void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); /// removeDeadDef - If a def of a live interval is now determined dead, /// remove the val# it defines. If the live interval becomes empty, remove /// it as well. bool removeDeadDef(LiveInterval &li, MachineInstr *DefMI); /// markAsJoined - Remember that CopyMI has already been joined. void markAsJoined(MachineInstr *CopyMI); /// eliminateUndefCopy - Handle copies of undef values. bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP); public: static char ID; // Class identification, replacement for typeinfo RegisterCoalescer() : MachineFunctionPass(ID) { initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); } virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); /// runOnMachineFunction - pass entry point virtual bool runOnMachineFunction(MachineFunction&); /// print - Implement the dump method. virtual void print(raw_ostream &O, const Module* = 0) const; }; } /// end anonymous namespace char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", "Simple Register Coalescing", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", "Simple Register Coalescing", false, false) char RegisterCoalescer::ID = 0; static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) { if (!a) return b; if (!b) return a; return tri.composeSubRegIndices(a, b); } static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, unsigned &Src, unsigned &Dst, unsigned &SrcSub, unsigned &DstSub) { if (MI->isCopy()) { Dst = MI->getOperand(0).getReg(); DstSub = MI->getOperand(0).getSubReg(); Src = MI->getOperand(1).getReg(); SrcSub = MI->getOperand(1).getSubReg(); } else if (MI->isSubregToReg()) { Dst = MI->getOperand(0).getReg(); DstSub = compose(tri, MI->getOperand(0).getSubReg(), MI->getOperand(3).getImm()); Src = MI->getOperand(2).getReg(); SrcSub = MI->getOperand(2).getSubReg(); } else return false; return true; } bool CoalescerPair::setRegisters(const MachineInstr *MI) { SrcReg = DstReg = 0; SrcIdx = DstIdx = 0; NewRC = 0; Flipped = CrossClass = false; unsigned Src, Dst, SrcSub, DstSub; if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) return false; Partial = SrcSub || DstSub; // If one register is a physreg, it must be Dst. if (TargetRegisterInfo::isPhysicalRegister(Src)) { if (TargetRegisterInfo::isPhysicalRegister(Dst)) return false; std::swap(Src, Dst); std::swap(SrcSub, DstSub); Flipped = true; } const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); if (TargetRegisterInfo::isPhysicalRegister(Dst)) { // Eliminate DstSub on a physreg. if (DstSub) { Dst = TRI.getSubReg(Dst, DstSub); if (!Dst) return false; DstSub = 0; } // Eliminate SrcSub by picking a corresponding Dst superregister. if (SrcSub) { Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); if (!Dst) return false; SrcSub = 0; } else if (!MRI.getRegClass(Src)->contains(Dst)) { return false; } } else { // Both registers are virtual. const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); // Both registers have subreg indices. if (SrcSub && DstSub) { // Copies between different sub-registers are never coalescable. if (Src == Dst && SrcSub != DstSub) return false; NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, SrcIdx, DstIdx); if (!NewRC) return false; } else if (DstSub) { // SrcReg will be merged with a sub-register of DstReg. SrcIdx = DstSub; NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); } else if (SrcSub) { // DstReg will be merged with a sub-register of SrcReg. DstIdx = SrcSub; NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); } else { // This is a straight copy without sub-registers. NewRC = TRI.getCommonSubClass(DstRC, SrcRC); } // The combined constraint may be impossible to satisfy. if (!NewRC) return false; // Prefer SrcReg to be a sub-register of DstReg. // FIXME: Coalescer should support subregs symmetrically. if (DstIdx && !SrcIdx) { std::swap(Src, Dst); std::swap(SrcIdx, DstIdx); Flipped = !Flipped; } CrossClass = NewRC != DstRC || NewRC != SrcRC; } // Check our invariants assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && "Cannot have a physical SubIdx"); SrcReg = Src; DstReg = Dst; return true; } bool CoalescerPair::flip() { if (TargetRegisterInfo::isPhysicalRegister(DstReg)) return false; std::swap(SrcReg, DstReg); std::swap(SrcIdx, DstIdx); Flipped = !Flipped; return true; } bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { if (!MI) return false; unsigned Src, Dst, SrcSub, DstSub; if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) return false; // Find the virtual register that is SrcReg. if (Dst == SrcReg) { std::swap(Src, Dst); std::swap(SrcSub, DstSub); } else if (Src != SrcReg) { return false; } // Now check that Dst matches DstReg. if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { if (!TargetRegisterInfo::isPhysicalRegister(Dst)) return false; assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); // DstSub could be set for a physreg from INSERT_SUBREG. if (DstSub) Dst = TRI.getSubReg(Dst, DstSub); // Full copy of Src. if (!SrcSub) return DstReg == Dst; // This is a partial register copy. Check that the parts match. return TRI.getSubReg(DstReg, SrcSub) == Dst; } else { // DstReg is virtual. if (DstReg != Dst) return false; // Registers match, do the subregisters line up? return compose(TRI, SrcIdx, SrcSub) == compose(TRI, DstIdx, DstSub); } } void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) { /// Joined copies are not deleted immediately, but kept in JoinedCopies. JoinedCopies.insert(CopyMI); /// Mark all register operands of CopyMI as so they won't affect dead /// code elimination. for (MachineInstr::mop_iterator I = CopyMI->operands_begin(), E = CopyMI->operands_end(); I != E; ++I) if (I->isReg()) I->setIsUndef(true); } /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA /// being the source and IntB being the dest, thus this defines a value number /// in IntB. If the source value number (in IntA) is defined by a copy from B, /// see if we can merge these two pieces of B into a single value number, /// eliminating a copy. For example: /// /// A3 = B0 /// ... /// B1 = A3 <- this copy /// /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 /// value number to be replaced with B0 (which simplifies the B liveinterval). /// /// This returns true if an interval was modified. /// bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI) { assert(!CP.isPartial() && "This doesn't work for partial copies."); // Bail if there is no dst interval - can happen when merging physical subreg // operations. if (!LIS->hasInterval(CP.getDstReg())) return false; LiveInterval &IntA = LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); LiveInterval &IntB = LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); if (BLR == IntB.end()) return false; VNInfo *BValNo = BLR->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (BValNo->def != CopyIdx) return false; // AValNo is the value number in A that defines the copy, A3 in the example. SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx); // The live range might not exist after fun with physreg coalescing. if (ALR == IntA.end()) return false; VNInfo *AValNo = ALR->valno; // If AValNo is defined as a copy from IntB, we can potentially process this. // Get the instruction that defines this value number. MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); if (!CP.isCoalescable(ACopyMI)) return false; // Get the LiveRange in IntB that this value number starts with. LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot()); if (ValLR == IntB.end()) return false; // Make sure that the end of the live range is inside the same block as // CopyMI. MachineInstr *ValLREndInst = LIS->getInstructionFromIndex(ValLR->end.getPrevSlot()); if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent()) return false; // Okay, we now know that ValLR ends in the same block that the CopyMI // live-range starts. If there are no intervening live ranges between them in // IntB, we can merge them. if (ValLR+1 != BLR) return false; // If a live interval is a physical register, conservatively check if any // of its aliases is overlapping the live interval of the virtual register. // If so, do not coalesce. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) { for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS) if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) { DEBUG({ dbgs() << "\t\tInterfere with alias "; LIS->getInterval(*AS).print(dbgs(), TRI); }); return false; } } DEBUG({ dbgs() << "Extending: "; IntB.print(dbgs(), TRI); }); SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start; // We are about to delete CopyMI, so need to remove it as the 'instruction // that defines this value #'. Update the valnum with the new defining // instruction #. BValNo->def = FillerStart; // Okay, we can merge them. We need to insert a new liverange: // [ValLR.end, BLR.begin) of either value number, then we merge the // two value numbers. IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); // If the IntB live range is assigned to a physical register, and if that // physreg has sub-registers, update their live intervals as well. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) { for (const uint16_t *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) { if (!LIS->hasInterval(*SR)) continue; LiveInterval &SRLI = LIS->getInterval(*SR); SRLI.addRange(LiveRange(FillerStart, FillerEnd, SRLI.getNextValue(FillerStart, LIS->getVNInfoAllocator()))); } } // Okay, merge "B1" into the same value number as "B0". if (BValNo != ValLR->valno) { // If B1 is killed by a PHI, then the merged live range must also be killed // by the same PHI, as B0 and B1 can not overlap. bool HasPHIKill = BValNo->hasPHIKill(); IntB.MergeValueNumberInto(BValNo, ValLR->valno); if (HasPHIKill) ValLR->valno->setHasPHIKill(true); } DEBUG({ dbgs() << " result = "; IntB.print(dbgs(), TRI); dbgs() << "\n"; }); // If the source instruction was killing the source register before the // merge, unset the isKill marker given the live range has been extended. int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); if (UIdx != -1) { ValLREndInst->getOperand(UIdx).setIsKill(false); } // Rewrite the copy. If the copy instruction was killing the destination // register before the merge, find the last use and trim the live range. That // will also add the isKill marker. CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); if (ALR->end == CopyIdx) LIS->shrinkToUses(&IntA); ++numExtends; return true; } /// hasOtherReachingDefs - Return true if there are definitions of IntB /// other than BValNo val# that can reach uses of AValno val# of IntA. bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, VNInfo *AValNo, VNInfo *BValNo) { for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); AI != AE; ++AI) { if (AI->valno != AValNo) continue; LiveInterval::Ranges::iterator BI = std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start); if (BI != IntB.ranges.begin()) --BI; for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) { if (BI->valno == BValNo) continue; if (BI->start <= AI->start && BI->end > AI->start) return true; if (BI->start > AI->start && BI->start < AI->end) return true; } } return false; } /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with /// IntA being the source and IntB being the dest, thus this defines a value /// number in IntB. If the source value number (in IntA) is defined by a /// commutable instruction and its other operand is coalesced to the copy dest /// register, see if we can transform the copy into a noop by commuting the /// definition. For example, /// /// A3 = op A2 B0 /// ... /// B1 = A3 <- this copy /// ... /// = op A3 <- more uses /// /// ==> /// /// B2 = op B0 A2 /// ... /// B1 = B2 <- now an identify copy /// ... /// = op B2 <- more uses /// /// This returns true if an interval was modified. /// bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, MachineInstr *CopyMI) { // FIXME: For now, only eliminate the copy by commuting its def when the // source register is a virtual register. We want to guard against cases // where the copy is a back edge copy and commuting the def lengthen the // live interval of the source register to the entire loop. if (CP.isPhys() && CP.isFlipped()) return false; // Bail if there is no dst interval. if (!LIS->hasInterval(CP.getDstReg())) return false; SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); LiveInterval &IntA = LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); LiveInterval &IntB = LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); if (!BValNo || BValNo->def != CopyIdx) return false; assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A3 in the example. VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); assert(AValNo && "COPY source not live"); // If other defs can reach uses of this def, then it's not safe to perform // the optimization. if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill()) return false; MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); if (!DefMI) return false; if (!DefMI->isCommutable()) return false; // If DefMI is a two-address instruction then commuting it will change the // destination register. int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); assert(DefIdx != -1); unsigned UseOpIdx; if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) return false; unsigned Op1, Op2, NewDstIdx; if (!TII->findCommutedOpIndices(DefMI, Op1, Op2)) return false; if (Op1 == UseOpIdx) NewDstIdx = Op2; else if (Op2 == UseOpIdx) NewDstIdx = Op1; else return false; MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); unsigned NewReg = NewDstMO.getReg(); if (NewReg != IntB.reg || !NewDstMO.isKill()) return false; // Make sure there are no other definitions of IntB that would reach the // uses which the new definition can reach. if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) return false; // Abort if the aliases of IntB.reg have values that are not simply the // clobbers from the superreg. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS) if (LIS->hasInterval(*AS) && hasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0)) return false; // If some of the uses of IntA.reg is already coalesced away, return false. // It's not possible to determine whether it's safe to perform the coalescing. for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(IntA.reg), UE = MRI->use_nodbg_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); if (ULR == IntA.end()) continue; if (ULR->valno == AValNo && JoinedCopies.count(UseMI)) return false; } DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' << *DefMI); // At this point we have decided that it is legal to do this // transformation. Start by commuting the instruction. MachineBasicBlock *MBB = DefMI->getParent(); MachineInstr *NewMI = TII->commuteInstruction(DefMI); if (!NewMI) return false; if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && TargetRegisterInfo::isVirtualRegister(IntB.reg) && !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) return false; if (NewMI != DefMI) { LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); MachineBasicBlock::iterator Pos = DefMI; MBB->insert(Pos, NewMI); MBB->erase(DefMI); } unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false); NewMI->getOperand(OpIdx).setIsKill(); // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. // A = or A, B // ... // B = A // ... // C = A // ... // = B // Update uses of IntA of the specific Val# with IntB. for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), UE = MRI->use_end(); UI != UE;) { MachineOperand &UseMO = UI.getOperand(); MachineInstr *UseMI = &*UI; ++UI; if (JoinedCopies.count(UseMI)) continue; if (UseMI->isDebugValue()) { // FIXME These don't have an instruction index. Not clear we have enough // info to decide whether to do this replacement or not. For now do it. UseMO.setReg(NewReg); continue; } SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); if (ULR == IntA.end() || ULR->valno != AValNo) continue; if (TargetRegisterInfo::isPhysicalRegister(NewReg)) UseMO.substPhysReg(NewReg, *TRI); else UseMO.setReg(NewReg); if (UseMI == CopyMI) continue; if (!UseMI->isCopy()) continue; if (UseMI->getOperand(0).getReg() != IntB.reg || UseMI->getOperand(0).getSubReg()) continue; // This copy will become a noop. If it's defining a new val#, merge it into // BValNo. SlotIndex DefIdx = UseIdx.getRegSlot(); VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); if (!DVNI) continue; DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); assert(DVNI->def == DefIdx); BValNo = IntB.MergeValueNumberInto(BValNo, DVNI); markAsJoined(UseMI); } // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition // is updated. VNInfo *ValNo = BValNo; ValNo->def = AValNo->def; for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); AI != AE; ++AI) { if (AI->valno != AValNo) continue; IntB.addRange(LiveRange(AI->start, AI->end, ValNo)); } DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); IntA.removeValNo(AValNo); DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); ++numCommutes; return true; } /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial /// computation, replace the copy by rematerialize the definition. bool RegisterCoalescer::reMaterializeTrivialDef(LiveInterval &SrcInt, bool preserveSrcInt, unsigned DstReg, MachineInstr *CopyMI) { SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx); assert(SrcLR != SrcInt.end() && "Live range not found!"); VNInfo *ValNo = SrcLR->valno; if (ValNo->isPHIDef() || ValNo->isUnused()) return false; MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); if (!DefMI) return false; assert(DefMI && "Defining instruction disappeared"); if (!DefMI->isAsCheapAsAMove()) return false; if (!TII->isTriviallyReMaterializable(DefMI, AA)) return false; bool SawStore = false; if (!DefMI->isSafeToMove(TII, AA, SawStore)) return false; const MCInstrDesc &MCID = DefMI->getDesc(); if (MCID.getNumDefs() != 1) return false; if (!DefMI->isImplicitDef()) { // Make sure the copy destination register class fits the instruction // definition register class. The mismatch can happen as a result of earlier // extract_subreg, insert_subreg, subreg_to_reg coalescing. const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI, *MF); if (TargetRegisterInfo::isVirtualRegister(DstReg)) { if (MRI->getRegClass(DstReg) != RC) return false; } else if (!RC->contains(DstReg)) return false; } MachineBasicBlock *MBB = CopyMI->getParent(); MachineBasicBlock::iterator MII = llvm::next(MachineBasicBlock::iterator(CopyMI)); TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI); MachineInstr *NewMI = prior(MII); // NewMI may have dead implicit defs (E.g. EFLAGS for MOVr0 on X86). // We need to remember these so we can add intervals once we insert // NewMI into SlotIndexes. SmallVector NewMIImplDefs; for (unsigned i = NewMI->getDesc().getNumOperands(), e = NewMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = NewMI->getOperand(i); if (MO.isReg()) { assert(MO.isDef() && MO.isImplicit() && MO.isDead() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())); NewMIImplDefs.push_back(MO.getReg()); } } // CopyMI may have implicit operands, transfer them over to the newly // rematerialized instruction. And update implicit def interval valnos. for (unsigned i = CopyMI->getDesc().getNumOperands(), e = CopyMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = CopyMI->getOperand(i); if (MO.isReg()) { assert(MO.isImplicit() && "No explicit operands after implict operands."); // Discard VReg implicit defs. if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { NewMI->addOperand(MO); } } } LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { unsigned reg = NewMIImplDefs[i]; LiveInterval &li = LIS->getInterval(reg); VNInfo *DeadDefVN = li.getNextValue(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); LiveRange lr(NewMIIdx.getRegSlot(), NewMIIdx.getDeadSlot(), DeadDefVN); li.addRange(lr); } CopyMI->eraseFromParent(); ReMatCopies.insert(CopyMI); ReMatDefs.insert(DefMI); DEBUG(dbgs() << "Remat: " << *NewMI); ++NumReMats; // The source interval can become smaller because we removed a use. if (preserveSrcInt) LIS->shrinkToUses(&SrcInt); return true; } /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of /// values, it only removes local variables. When we have a copy like: /// /// %vreg1 = COPY %vreg2 /// /// We delete the copy and remove the corresponding value number from %vreg1. /// Any uses of that value number are marked as . bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP) { SlotIndex Idx = LIS->getInstructionIndex(CopyMI); LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg()); if (SrcInt->liveAt(Idx)) return false; LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg()); if (DstInt->liveAt(Idx)) return false; // No intervals are live-in to CopyMI - it is undef. if (CP.isFlipped()) DstInt = SrcInt; SrcInt = 0; VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot()); assert(DeadVNI && "No value defined in DstInt"); DstInt->removeValNo(DeadVNI); // Find new undef uses. for (MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end(); I != E; ++I) { MachineOperand &MO = I.getOperand(); if (MO.isDef() || MO.isUndef()) continue; MachineInstr *MI = MO.getParent(); SlotIndex Idx = LIS->getInstructionIndex(MI); if (DstInt->liveAt(Idx)) continue; MO.setIsUndef(true); DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI); } return true; } /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and /// update the subregister number if it is not zero. If DstReg is a /// physical register and the existing subregister number of the def / use /// being updated is not zero, make sure to set it to the correct physical /// subregister. void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx) { bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); LiveInterval &DstInt = LIS->getInterval(DstReg); // Update LiveDebugVariables. LDV->renameRegister(SrcReg, DstReg, SubIdx); for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg); MachineInstr *UseMI = I.skipInstruction();) { bool AlreadyJoined = JoinedCopies.count(UseMI); // A PhysReg copy that won't be coalesced can perhaps be rematerialized // instead. if (DstIsPhys) { if (UseMI->isFullCopy() && UseMI->getOperand(1).getReg() == SrcReg && UseMI->getOperand(0).getReg() != SrcReg && UseMI->getOperand(0).getReg() != DstReg && !AlreadyJoined && reMaterializeTrivialDef(LIS->getInterval(SrcReg), false, UseMI->getOperand(0).getReg(), UseMI)) continue; } SmallVector Ops; bool Reads, Writes; tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); // If SrcReg wasn't read, it may still be the case that DstReg is live-in // because SrcReg is a sub-register. if (!Reads && SubIdx && !AlreadyJoined) Reads = DstInt.liveAt(LIS->getInstructionIndex(UseMI)); // Replace SrcReg with DstReg in all UseMI operands. for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = UseMI->getOperand(Ops[i]); // Adjust flags in case of sub-register joins. We don't want to // turn a full def into a read-modify-write sub-register def and vice // versa. if (SubIdx && !AlreadyJoined && MO.isDef()) MO.setIsUndef(!Reads); if (DstIsPhys) MO.substPhysReg(DstReg, *TRI); else MO.substVirtReg(DstReg, SubIdx, *TRI); } // This instruction is a copy that will be removed. if (AlreadyJoined) continue; DEBUG({ dbgs() << "\t\tupdated: "; if (!UseMI->isDebugValue()) dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; dbgs() << *UseMI; }); } } /// removeIntervalIfEmpty - Check if the live interval of a physical register /// is empty, if so remove it and also remove the empty intervals of its /// sub-registers. Return true if live interval is removed. static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS, const TargetRegisterInfo *TRI) { if (li.empty()) { if (TargetRegisterInfo::isPhysicalRegister(li.reg)) for (const uint16_t* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) { if (!LIS->hasInterval(*SR)) continue; LiveInterval &sli = LIS->getInterval(*SR); if (sli.empty()) LIS->removeInterval(*SR); } LIS->removeInterval(li.reg); return true; } return false; } /// removeDeadDef - If a def of a live interval is now determined dead, remove /// the val# it defines. If the live interval becomes empty, remove it as well. bool RegisterCoalescer::removeDeadDef(LiveInterval &li, MachineInstr *DefMI) { SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot(); LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx); if (DefIdx != MLR->valno->def) return false; li.removeValNo(MLR->valno); return removeIntervalIfEmpty(li, LIS, TRI); } /// canJoinPhys - Return true if a copy involving a physreg should be joined. bool RegisterCoalescer::canJoinPhys(CoalescerPair &CP) { /// Always join simple intervals that are defined by a single copy from a /// reserved register. This doesn't increase register pressure, so it is /// always beneficial. if (!RegClassInfo.isReserved(CP.getDstReg())) { DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); return false; } LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); if (CP.isFlipped() && JoinVInt.containsOneValue()) return true; DEBUG(dbgs() << "\tCannot join defs into reserved register.\n"); return false; } /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, /// which are the src/dst of the copy instruction CopyMI. This returns true /// if the copy was successfully coalesced away. If it is not currently /// possible to coalesce this interval, but it may be possible if other /// things get coalesced, then it returns true by reference in 'Again'. bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { Again = false; if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI)) return false; // Already done. DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); CoalescerPair CP(*TII, *TRI); if (!CP.setRegisters(CopyMI)) { DEBUG(dbgs() << "\tNot coalescable.\n"); return false; } // If they are already joined we continue. if (CP.getSrcReg() == CP.getDstReg()) { markAsJoined(CopyMI); DEBUG(dbgs() << "\tCopy already coalesced.\n"); return false; // Not coalescable. } // Eliminate undefs. if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) { markAsJoined(CopyMI); DEBUG(dbgs() << "\tEliminated copy of value.\n"); return false; // Not coalescable. } // Enforce policies. if (CP.isPhys()) { DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); if (!canJoinPhys(CP)) { // Before giving up coalescing, if definition of source is defined by // trivial computation, try rematerializing it. if (!CP.isFlipped() && reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true, CP.getDstReg(), CopyMI)) return true; return false; } } else { DEBUG({ dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName() << " with "; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() << PrintReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " << PrintReg(CP.getSrcReg()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; else dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; }); // When possible, let DstReg be the larger interval. if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() > LIS->getInterval(CP.getDstReg()).ranges.size()) CP.flip(); } // Okay, attempt to join these two intervals. On failure, this returns false. // Otherwise, if one of the intervals being joined is a physreg, this method // always canonicalizes DstInt to be it. The output "SrcInt" will not have // been modified, so we can use this information below to update aliases. if (!joinIntervals(CP)) { // Coalescing failed. // If definition of source is defined by trivial computation, try // rematerializing it. if (!CP.isFlipped() && reMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true, CP.getDstReg(), CopyMI)) return true; // If we can eliminate the copy without merging the live ranges, do so now. if (!CP.isPartial()) { if (adjustCopiesBackFrom(CP, CopyMI) || removeCopyByCommutingDef(CP, CopyMI)) { markAsJoined(CopyMI); DEBUG(dbgs() << "\tTrivial!\n"); return true; } } // Otherwise, we are unable to join the intervals. DEBUG(dbgs() << "\tInterference!\n"); Again = true; // May be possible to coalesce later. return false; } // Coalescing to a virtual register that is of a sub-register class of the // other. Make sure the resulting register is set to the right register class. if (CP.isCrossClass()) { ++numCrossRCs; MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); } // Remember to delete the copy instruction. markAsJoined(CopyMI); // Rewrite all SrcReg operands to DstReg. // Also update DstReg operands to include DstIdx if it is set. if (CP.getDstIdx()) updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); // SrcReg is guaranteed to be the register whose live interval that is // being merged. LIS->removeInterval(CP.getSrcReg()); // Update regalloc hint. TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); DEBUG({ LiveInterval &DstInt = LIS->getInterval(CP.getDstReg()); dbgs() << "\tJoined. Result = "; DstInt.print(dbgs(), TRI); dbgs() << "\n"; }); ++numJoins; return true; } /// Attempt joining with a reserved physreg. bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { assert(CP.isPhys() && "Must be a physreg copy"); assert(RegClassInfo.isReserved(CP.getDstReg()) && "Not a reserved register"); LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; }); assert(CP.isFlipped() && RHS.containsOneValue() && "Invalid join with reserved register"); // Optimization for reserved registers like ESP. We can only merge with a // reserved physreg if RHS has a single value that is a copy of CP.DstReg(). // The live range of the reserved register will look like a set of dead defs // - we don't properly track the live range of reserved registers. // Deny any overlapping intervals. This depends on all the reserved // register live ranges to look like dead defs. for (const uint16_t *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) { if (!LIS->hasInterval(*AS)) { // Make sure at least DstReg itself exists before attempting a join. if (*AS == CP.getDstReg()) LIS->getOrCreateInterval(CP.getDstReg()); continue; } if (RHS.overlaps(LIS->getInterval(*AS))) { DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n'); return false; } } // Skip any value computations, we are not adding new values to the // reserved register. Also skip merging the live ranges, the reserved // register live range doesn't need to be accurate as long as all the // defs are there. return true; } /// ComputeUltimateVN - Assuming we are going to join two live intervals, /// compute what the resultant value numbers for each value in the input two /// ranges will be. This is complicated by copies between the two which can /// and will commonly cause multiple value numbers to be merged into one. /// /// VN is the value number that we're trying to resolve. InstDefiningValue /// keeps track of the new InstDefiningValue assignment for the result /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of /// whether a value in this or other is a copy from the opposite set. /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have /// already been assigned. /// /// ThisFromOther[x] - If x is defined as a copy from the other interval, this /// contains the value number the copy is from. /// static unsigned ComputeUltimateVN(VNInfo *VNI, SmallVector &NewVNInfo, DenseMap &ThisFromOther, DenseMap &OtherFromThis, SmallVector &ThisValNoAssignments, SmallVector &OtherValNoAssignments) { unsigned VN = VNI->id; // If the VN has already been computed, just return it. if (ThisValNoAssignments[VN] >= 0) return ThisValNoAssignments[VN]; assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers"); // If this val is not a copy from the other val, then it must be a new value // number in the destination. DenseMap::iterator I = ThisFromOther.find(VNI); if (I == ThisFromOther.end()) { NewVNInfo.push_back(VNI); return ThisValNoAssignments[VN] = NewVNInfo.size()-1; } VNInfo *OtherValNo = I->second; // Otherwise, this *is* a copy from the RHS. If the other side has already // been computed, return it. if (OtherValNoAssignments[OtherValNo->id] >= 0) return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id]; // Mark this value number as currently being computed, then ask what the // ultimate value # of the other value is. ThisValNoAssignments[VN] = -2; unsigned UltimateVN = ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther, OtherValNoAssignments, ThisValNoAssignments); return ThisValNoAssignments[VN] = UltimateVN; } // Find out if we have something like // A = X // B = X // if so, we can pretend this is actually // A = X // B = A // which allows us to coalesce A and B. // VNI is the definition of B. LR is the life range of A that includes // the slot just before B. If we return true, we add "B = X" to DupCopies. // This implies that A dominates B. static bool RegistersDefinedFromSameValue(LiveIntervals &li, const TargetRegisterInfo &tri, CoalescerPair &CP, VNInfo *VNI, LiveRange *LR, SmallVector &DupCopies) { // FIXME: This is very conservative. For example, we don't handle // physical registers. MachineInstr *MI = li.getInstructionFromIndex(VNI->def); if (!MI || !MI->isFullCopy() || CP.isPartial() || CP.isPhys()) return false; unsigned Dst = MI->getOperand(0).getReg(); unsigned Src = MI->getOperand(1).getReg(); if (!TargetRegisterInfo::isVirtualRegister(Src) || !TargetRegisterInfo::isVirtualRegister(Dst)) return false; unsigned A = CP.getDstReg(); unsigned B = CP.getSrcReg(); if (B == Dst) std::swap(A, B); assert(Dst == A); VNInfo *Other = LR->valno; const MachineInstr *OtherMI = li.getInstructionFromIndex(Other->def); if (!OtherMI || !OtherMI->isFullCopy()) return false; unsigned OtherDst = OtherMI->getOperand(0).getReg(); unsigned OtherSrc = OtherMI->getOperand(1).getReg(); if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) || !TargetRegisterInfo::isVirtualRegister(OtherDst)) return false; assert(OtherDst == B); if (Src != OtherSrc) return false; // If the copies use two different value numbers of X, we cannot merge // A and B. LiveInterval &SrcInt = li.getInterval(Src); // getVNInfoBefore returns NULL for undef copies. In this case, the // optimization is still safe. if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def)) return false; DupCopies.push_back(MI); return true; } /// joinIntervals - Attempt to join these two intervals. On failure, this /// returns false. bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { // Handle physreg joins separately. if (CP.isPhys()) return joinReservedPhysReg(CP); LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; }); // Compute the final value assignment, assuming that the live ranges can be // coalesced. SmallVector LHSValNoAssignments; SmallVector RHSValNoAssignments; DenseMap LHSValsDefinedFromRHS; DenseMap RHSValsDefinedFromLHS; SmallVector NewVNInfo; SmallVector DupCopies; LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg()); DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; }); // Loop over the value numbers of the LHS, seeing if any are defined from // the RHS. for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; if (VNI->isUnused() || VNI->isPHIDef()) continue; MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def); assert(MI && "Missing def"); if (!MI->isCopyLike()) // Src not defined by a copy? continue; // Figure out the value # from the RHS. LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot()); // The copy could be to an aliased physreg. if (!lr) continue; // DstReg is known to be a register in the LHS interval. If the src is // from the RHS interval, we can use its value #. if (!CP.isCoalescable(MI) && !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies)) continue; LHSValsDefinedFromRHS[VNI] = lr->valno; } // Loop over the value numbers of the RHS, seeing if any are defined from // the LHS. for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; if (VNI->isUnused() || VNI->isPHIDef()) continue; MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def); assert(MI && "Missing def"); if (!MI->isCopyLike()) // Src not defined by a copy? continue; // Figure out the value # from the LHS. LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot()); // The copy could be to an aliased physreg. if (!lr) continue; // DstReg is known to be a register in the RHS interval. If the src is // from the LHS interval, we can use its value #. if (!CP.isCoalescable(MI) && !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies)) continue; RHSValsDefinedFromLHS[VNI] = lr->valno; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused()) continue; ComputeUltimateVN(VNI, NewVNInfo, LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, LHSValNoAssignments, RHSValNoAssignments); } for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused()) continue; // If this value number isn't a copy from the LHS, it's a new number. if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) { NewVNInfo.push_back(VNI); RHSValNoAssignments[VN] = NewVNInfo.size()-1; continue; } ComputeUltimateVN(VNI, NewVNInfo, RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, RHSValNoAssignments, LHSValNoAssignments); } // Armed with the mappings of LHS/RHS values to ultimate values, walk the // interval lists to see if these intervals are coalescable. LiveInterval::const_iterator I = LHS.begin(); LiveInterval::const_iterator IE = LHS.end(); LiveInterval::const_iterator J = RHS.begin(); LiveInterval::const_iterator JE = RHS.end(); // Skip ahead until the first place of potential sharing. if (I != IE && J != JE) { if (I->start < J->start) { I = std::upper_bound(I, IE, J->start); if (I != LHS.begin()) --I; } else if (J->start < I->start) { J = std::upper_bound(J, JE, I->start); if (J != RHS.begin()) --J; } } while (I != IE && J != JE) { // Determine if these two live ranges overlap. bool Overlaps; if (I->start < J->start) { Overlaps = I->end > J->start; } else { Overlaps = J->end > I->start; } // If so, check value # info to determine if they are really different. if (Overlaps) { // If the live range overlap will map to the same value number in the // result liverange, we can still coalesce them. If not, we can't. if (LHSValNoAssignments[I->valno->id] != RHSValNoAssignments[J->valno->id]) return false; } if (I->end < J->end) ++I; else ++J; } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = LHSValsDefinedFromRHS.begin(), E = LHSValsDefinedFromRHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned LHSValID = LHSValNoAssignments[VNI->id]; if (VNI->hasPHIKill()) NewVNInfo[LHSValID]->setHasPHIKill(true); } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = RHSValsDefinedFromLHS.begin(), E = RHSValsDefinedFromLHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned RHSValID = RHSValNoAssignments[VNI->id]; if (VNI->hasPHIKill()) NewVNInfo[RHSValID]->setHasPHIKill(true); } if (LHSValNoAssignments.empty()) LHSValNoAssignments.push_back(-1); if (RHSValNoAssignments.empty()) RHSValNoAssignments.push_back(-1); SmallVector SourceRegisters; for (SmallVector::iterator I = DupCopies.begin(), E = DupCopies.end(); I != E; ++I) { MachineInstr *MI = *I; // We have pretended that the assignment to B in // A = X // B = X // was actually a copy from A. Now that we decided to coalesce A and B, // transform the code into // A = X // X = X // and mark the X as coalesced to keep the illusion. unsigned Src = MI->getOperand(1).getReg(); SourceRegisters.push_back(Src); MI->getOperand(0).substVirtReg(Src, 0, *TRI); markAsJoined(MI); } // If B = X was the last use of X in a liverange, we have to shrink it now // that B = X is gone. for (SmallVector::iterator I = SourceRegisters.begin(), E = SourceRegisters.end(); I != E; ++I) { LIS->shrinkToUses(&LIS->getInterval(*I)); } // If we get here, we know that we can coalesce the live ranges. Ask the // intervals to coalesce themselves now. LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo, MRI); return true; } namespace { // DepthMBBCompare - Comparison predicate that sort first based on the loop // depth of the basic block (the unsigned), and then on the MBB number. struct DepthMBBCompare { typedef std::pair DepthMBBPair; bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { // Deeper loops first if (LHS.first != RHS.first) return LHS.first > RHS.first; // Prefer blocks that are more connected in the CFG. This takes care of // the most difficult copies first while intervals are short. unsigned cl = LHS.second->pred_size() + LHS.second->succ_size(); unsigned cr = RHS.second->pred_size() + RHS.second->succ_size(); if (cl != cr) return cl > cr; // As a last resort, sort by block number. return LHS.second->getNumber() < RHS.second->getNumber(); } }; } void RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB, std::vector &TryAgain) { DEBUG(dbgs() << MBB->getName() << ":\n"); // Collect all copy-like instructions in MBB. Don't start coalescing anything // yet, it might invalidate the iterator. const unsigned PrevSize = TryAgain.size(); for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) if (MII->isCopyLike()) TryAgain.push_back(MII); // Try coalescing the collected copies immediately. // Null out the successful joins. for (unsigned i = PrevSize, e = TryAgain.size(); i != e; ++i) { bool Again = false; if (joinCopy(TryAgain[i], Again) || !Again) TryAgain[i] = 0; } // Remove the nulls from TryAgain. TryAgain.erase(std::remove(TryAgain.begin() + PrevSize, TryAgain.end(), (MachineInstr*)0), TryAgain.end()); } void RegisterCoalescer::joinAllIntervals() { DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); std::vector TryAgainList; if (Loops->empty()) { // If there are no loops in the function, join intervals in function order. for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) copyCoalesceInMBB(I, TryAgainList); } else { // Otherwise, join intervals in inner loops before other intervals. // Unfortunately we can't just iterate over loop hierarchy here because // there may be more MBB's than BB's. Collect MBB's for sorting. // Join intervals in the function prolog first. We want to join physical // registers with virtual registers before the intervals got too long. std::vector > MBBs; for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){ MachineBasicBlock *MBB = I; MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I)); } // Sort by loop depth. std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); // Finally, join intervals in loop nest order. for (unsigned i = 0, e = MBBs.size(); i != e; ++i) copyCoalesceInMBB(MBBs[i].second, TryAgainList); } // Joining intervals can allow other intervals to be joined. Iteratively join // until we make no progress. bool ProgressMade = true; while (ProgressMade) { ProgressMade = false; for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { MachineInstr *&TheCopy = TryAgainList[i]; if (!TheCopy) continue; bool Again = false; bool Success = joinCopy(TheCopy, Again); if (Success || !Again) { TheCopy= 0; // Mark this one as done. ProgressMade = true; } } } } void RegisterCoalescer::releaseMemory() { JoinedCopies.clear(); ReMatCopies.clear(); ReMatDefs.clear(); } bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { MF = &fn; MRI = &fn.getRegInfo(); TM = &fn.getTarget(); TRI = TM->getRegisterInfo(); TII = TM->getInstrInfo(); LIS = &getAnalysis(); LDV = &getAnalysis(); AA = &getAnalysis(); Loops = &getAnalysis(); DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" << "********** Function: " << ((Value*)MF->getFunction())->getName() << '\n'); if (VerifyCoalescing) MF->verify(this, "Before register coalescing"); RegClassInfo.runOnMachineFunction(fn); // Join (coalesce) intervals if requested. if (EnableJoining) { joinAllIntervals(); DEBUG({ dbgs() << "********** INTERVALS POST JOINING **********\n"; for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I){ I->second->print(dbgs(), TRI); dbgs() << "\n"; } }); } // Perform a final pass over the instructions and compute spill weights // and remove identity moves. SmallVector DeadDefs, InflateRegs; for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); mii != mie; ) { MachineInstr *MI = mii; if (JoinedCopies.count(MI)) { // Delete all coalesced copies. bool DoDelete = true; assert(MI->isCopyLike() && "Unrecognized copy instruction"); unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg(); unsigned DstReg = MI->getOperand(0).getReg(); // Collect candidates for register class inflation. if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg))) InflateRegs.push_back(SrcReg); if (TargetRegisterInfo::isVirtualRegister(DstReg) && RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg))) InflateRegs.push_back(DstReg); if (TargetRegisterInfo::isPhysicalRegister(SrcReg) && MI->getNumOperands() > 2) // Do not delete extract_subreg, insert_subreg of physical // registers unless the definition is dead. e.g. // %DO = INSERT_SUBREG %D0, %S0, 1 // or else the scavenger may complain. LowerSubregs will // delete them later. DoDelete = false; if (MI->allDefsAreDead()) { if (TargetRegisterInfo::isVirtualRegister(SrcReg) && LIS->hasInterval(SrcReg)) LIS->shrinkToUses(&LIS->getInterval(SrcReg)); DoDelete = true; } if (!DoDelete) { // We need the instruction to adjust liveness, so make it a KILL. if (MI->isSubregToReg()) { MI->RemoveOperand(3); MI->RemoveOperand(1); } MI->setDesc(TII->get(TargetOpcode::KILL)); mii = llvm::next(mii); } else { LIS->RemoveMachineInstrFromMaps(MI); mii = mbbi->erase(mii); ++numPeep; } continue; } // Now check if this is a remat'ed def instruction which is now dead. if (ReMatDefs.count(MI)) { bool isDead = true; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; DeadDefs.push_back(Reg); if (TargetRegisterInfo::isVirtualRegister(Reg)) { // Remat may also enable register class inflation. if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg))) InflateRegs.push_back(Reg); } if (MO.isDead()) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg) || !MRI->use_nodbg_empty(Reg)) { isDead = false; break; } } if (isDead) { while (!DeadDefs.empty()) { unsigned DeadDef = DeadDefs.back(); DeadDefs.pop_back(); removeDeadDef(LIS->getInterval(DeadDef), MI); } LIS->RemoveMachineInstrFromMaps(mii); mii = mbbi->erase(mii); continue; } else DeadDefs.clear(); } ++mii; // Check for now unnecessary kill flags. if (LIS->isNotInMIMap(MI)) continue; SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isKill()) continue; unsigned reg = MO.getReg(); if (!reg || !LIS->hasInterval(reg)) continue; if (!LIS->getInterval(reg).killedAt(DefIdx)) { MO.setIsKill(false); continue; } // When leaving a kill flag on a physreg, check if any subregs should // remain alive. if (!TargetRegisterInfo::isPhysicalRegister(reg)) continue; for (const uint16_t *SR = TRI->getSubRegisters(reg); unsigned S = *SR; ++SR) if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx)) MI->addRegisterDefined(S, TRI); } } } // After deleting a lot of copies, register classes may be less constrained. // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 -> // DPR inflation. array_pod_sort(InflateRegs.begin(), InflateRegs.end()); InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), InflateRegs.end()); DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { unsigned Reg = InflateRegs[i]; if (MRI->reg_nodbg_empty(Reg)) continue; if (MRI->recomputeRegClass(Reg, *TM)) { DEBUG(dbgs() << PrintReg(Reg) << " inflated to " << MRI->getRegClass(Reg)->getName() << '\n'); ++NumInflated; } } DEBUG(dump()); DEBUG(LDV->dump()); if (VerifyCoalescing) MF->verify(this, "After register coalescing"); return true; } /// print - Implement the dump method. void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { LIS->print(O, m); }