//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAGInstrs class, which implements re-scheduling // of MachineInstrs. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched-instrs" #include "llvm/Operator.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterPressure.h" #include "llvm/CodeGen/ScheduleDAGILP.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallPtrSet.h" using namespace llvm; static cl::opt EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Enable use of AA during MI GAD construction")); ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo &mli, const MachineDominatorTree &mdt, bool IsPostRAFlag, LiveIntervals *lis) : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) { assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); DbgValues.clear(); assert(!(IsPostRA && MRI.getNumVirtRegs()) && "Virtual registers must be removed prior to PostRA scheduling"); const TargetSubtargetInfo &ST = TM.getSubtarget(); SchedModel.init(*ST.getSchedModel(), &ST, TII); } /// getUnderlyingObjectFromInt - This is the function that does the work of /// looking through basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObjectFromInt(const Value *V) { do { if (const Operator *U = dyn_cast(V)) { // If we find a ptrtoint, we can transfer control back to the // regular getUnderlyingObjectFromInt. if (U->getOpcode() == Instruction::PtrToInt) return U->getOperand(0); // If we find an add of a constant or a multiplied value, it's // likely that the other operand will lead us to the base // object. We don't have to worry about the case where the // object address is somehow being computed by the multiply, // because our callers only care when the result is an // identifiable object. if (U->getOpcode() != Instruction::Add || (!isa(U->getOperand(1)) && Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) return V; V = U->getOperand(0); } else { return V; } assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); } while (1); } /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObject(const Value *V) { // First just call Value::getUnderlyingObject to let it do what it does. do { V = GetUnderlyingObject(V); // If it found an inttoptr, use special code to continue climing. if (Operator::getOpcode(V) != Instruction::IntToPtr) break; const Value *O = getUnderlyingObjectFromInt(cast(V)->getOperand(0)); // If that succeeded in finding a pointer, continue the search. if (!O->getType()->isPointerTy()) break; V = O; } while (1); return V; } /// getUnderlyingObjectForInstr - If this machine instr has memory reference /// information and it can be tracked to a normal reference to a known /// object, return the Value for that object. Otherwise return null. static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, const MachineFrameInfo *MFI, bool &MayAlias) { MayAlias = true; if (!MI->hasOneMemOperand() || !(*MI->memoperands_begin())->getValue() || (*MI->memoperands_begin())->isVolatile()) return 0; const Value *V = (*MI->memoperands_begin())->getValue(); if (!V) return 0; V = getUnderlyingObject(V); if (const PseudoSourceValue *PSV = dyn_cast(V)) { // For now, ignore PseudoSourceValues which may alias LLVM IR values // because the code that uses this function has no way to cope with // such aliases. if (PSV->isAliased(MFI)) return 0; MayAlias = PSV->mayAlias(MFI); return V; } if (isIdentifiedObject(V)) return V; return 0; } void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { BB = bb; } void ScheduleDAGInstrs::finishBlock() { // Subclasses should no longer refer to the old block. BB = 0; } /// Initialize the map with the number of registers. void Reg2SUnitsMap::setRegLimit(unsigned Limit) { PhysRegSet.setUniverse(Limit); SUnits.resize(Limit); } /// Clear the map without deallocating storage. void Reg2SUnitsMap::clear() { for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) { SUnits[*I].clear(); } PhysRegSet.clear(); } /// Initialize the DAG and common scheduler state for the current scheduling /// region. This does not actually create the DAG, only clears it. The /// scheduling driver may call BuildSchedGraph multiple times per scheduling /// region. void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount) { assert(bb == BB && "startBlock should set BB"); RegionBegin = begin; RegionEnd = end; EndIndex = endcount; MISUnitMap.clear(); ScheduleDAG::clearDAG(); } /// Close the current scheduling region. Don't clear any state in case the /// driver wants to refer to the previous scheduling region. void ScheduleDAGInstrs::exitRegion() { // Nothing to do. } /// addSchedBarrierDeps - Add dependencies from instructions in the current /// list of instructions being scheduled to scheduling barrier by adding /// the exit SU to the register defs and use list. This is because we want to /// make sure instructions which define registers that are either used by /// the terminator or are live-out are properly scheduled. This is /// especially important when the definition latency of the return value(s) /// are too high to be hidden by the branch or when the liveout registers /// used by instructions in the fallthrough block. void ScheduleDAGInstrs::addSchedBarrierDeps() { MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0; ExitSU.setInstr(ExitMI); bool AllDepKnown = ExitMI && (ExitMI->isCall() || ExitMI->isBarrier()); if (ExitMI && AllDepKnown) { // If it's a call or a barrier, add dependencies on the defs and uses of // instruction. for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = ExitMI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1)); else { assert(!IsPostRA && "Virtual register encountered after regalloc."); addVRegUseDeps(&ExitSU, i); } } } else { // For others, e.g. fallthrough, conditional branch, assume the exit // uses all the registers that are livein to the successor blocks. assert(Uses.empty() && "Uses in set before adding deps?"); for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; if (!Uses.contains(Reg)) Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1)); } } } /// MO is an operand of SU's instruction that defines a physical register. Add /// data dependencies from SU to any uses of the physical register. void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); assert(MO.isDef() && "expect physreg def"); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtargetInfo &ST = TM.getSubtarget(); for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Uses.contains(*Alias)) continue; std::vector &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i].SU; if (UseSU == SU) continue; SDep dep(SU, SDep::Data, *Alias); // Adjust the dependence latency using operand def/use information, // then allow the target to perform its own adjustments. int UseOp = UseList[i].OpIdx; MachineInstr *RegUse = UseOp < 0 ? 0 : UseSU->getInstr(); dep.setLatency( SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, UseOp, /*FindMin=*/false)); dep.setMinLatency( SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, UseOp, /*FindMin=*/true)); ST.adjustSchedDependency(SU, UseSU, dep); UseSU->addPred(dep); } } } /// addPhysRegDeps - Add register dependencies (data, anti, and output) from /// this SUnit to following instructions in the same scheduling region that /// depend the physical register referenced at OperIdx. void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); const MachineOperand &MO = MI->getOperand(OperIdx); // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Defs.contains(*Alias)) continue; std::vector &DefList = Defs[*Alias]; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i].SU; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) { if (Kind == SDep::Anti) DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); else { SDep Dep(SU, Kind, /*Reg=*/*Alias); unsigned OutLatency = SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); Dep.setMinLatency(OutLatency); Dep.setLatency(OutLatency); DefSU->addPred(Dep); } } } } if (!MO.isDef()) { // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's uses. // Push this SUnit on the use list. Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx)); } else { addPhysRegDataDeps(SU, OperIdx); // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's defs. std::vector &DefList = Defs[MO.getReg()]; // clear this register's use list if (Uses.contains(MO.getReg())) Uses[MO.getReg()].clear(); if (!MO.isDead()) DefList.clear(); // Calls will not be reordered because of chain dependencies (see // below). Since call operands are dead, calls may continue to be added // to the DefList making dependence checking quadratic in the size of // the block. Instead, we leave only one call at the back of the // DefList. if (SU->isCall) { while (!DefList.empty() && DefList.back().SU->isCall) DefList.pop_back(); } // Defs are pushed in the order they are visited and never reordered. DefList.push_back(PhysRegSUOper(SU, OperIdx)); } } /// addVRegDefDeps - Add register output and data dependencies from this SUnit /// to instructions that occur later in the same scheduling region if they read /// from or write to the virtual register defined at OperIdx. /// /// TODO: Hoist loop induction variable increments. This has to be /// reevaluated. Generally, IV scheduling should be done before coalescing. void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); unsigned Reg = MI->getOperand(OperIdx).getReg(); // Singly defined vregs do not have output/anti dependencies. // The current operand is a def, so we have at least one. // Check here if there are any others... if (MRI.hasOneDef(Reg)) return; // Add output dependence to the next nearest def of this vreg. // // Unless this definition is dead, the output dependence should be // transitively redundant with antidependencies from this definition's // uses. We're conservative for now until we have a way to guarantee the uses // are not eliminated sometime during scheduling. The output dependence edge // is also useful if output latency exceeds def-use latency. VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); if (DefI == VRegDefs.end()) VRegDefs.insert(VReg2SUnit(Reg, SU)); else { SUnit *DefSU = DefI->SU; if (DefSU != SU && DefSU != &ExitSU) { SDep Dep(SU, SDep::Output, Reg); unsigned OutLatency = SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); Dep.setMinLatency(OutLatency); Dep.setLatency(OutLatency); DefSU->addPred(Dep); } DefI->SU = SU; } } /// addVRegUseDeps - Add a register data dependency if the instruction that /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a /// register antidependency from this SUnit to instructions that occur later in /// the same scheduling region if they write the virtual register. /// /// TODO: Handle ExitSU "uses" properly. void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { MachineInstr *MI = SU->getInstr(); unsigned Reg = MI->getOperand(OperIdx).getReg(); // Lookup this operand's reaching definition. assert(LIS && "vreg dependencies requires LiveIntervals"); LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI)); VNInfo *VNI = LRQ.valueIn(); // VNI will be valid because MachineOperand::readsReg() is checked by caller. assert(VNI && "No value to read by operand"); MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); // Phis and other noninstructions (after coalescing) have a NULL Def. if (Def) { SUnit *DefSU = getSUnit(Def); if (DefSU) { // The reaching Def lives within this scheduling region. // Create a data dependence. SDep dep(DefSU, SDep::Data, Reg); // Adjust the dependence latency using operand def/use information, then // allow the target to perform its own adjustments. int DefOp = Def->findRegisterDefOperandIdx(Reg); dep.setLatency( SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false)); dep.setMinLatency( SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true)); const TargetSubtargetInfo &ST = TM.getSubtarget(); ST.adjustSchedDependency(DefSU, SU, const_cast(dep)); SU->addPred(dep); } } // Add antidependence to the following def of the vreg it uses. VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); if (DefI != VRegDefs.end() && DefI->SU != SU) DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); } /// Return true if MI is an instruction we are unable to reason about /// (like a call or something with unmodeled side effects). static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { if (MI->isCall() || MI->hasUnmodeledSideEffects() || (MI->hasOrderedMemoryRef() && (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) return true; return false; } // This MI might have either incomplete info, or known to be unsafe // to deal with (i.e. volatile object). static inline bool isUnsafeMemoryObject(MachineInstr *MI, const MachineFrameInfo *MFI) { if (!MI || MI->memoperands_empty()) return true; // We purposefully do no check for hasOneMemOperand() here // in hope to trigger an assert downstream in order to // finish implementation. if ((*MI->memoperands_begin())->isVolatile() || MI->hasUnmodeledSideEffects()) return true; const Value *V = (*MI->memoperands_begin())->getValue(); if (!V) return true; V = getUnderlyingObject(V); if (const PseudoSourceValue *PSV = dyn_cast(V)) { // Similarly to getUnderlyingObjectForInstr: // For now, ignore PseudoSourceValues which may alias LLVM IR values // because the code that uses this function has no way to cope with // such aliases. if (PSV->isAliased(MFI)) return true; } // Does this pointer refer to a distinct and identifiable object? if (!isIdentifiedObject(V)) return true; return false; } /// This returns true if the two MIs need a chain edge betwee them. /// If these are not even memory operations, we still may need /// chain deps between them. The question really is - could /// these two MIs be reordered during scheduling from memory dependency /// point of view. static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, MachineInstr *MIa, MachineInstr *MIb) { // Cover a trivial case - no edge is need to itself. if (MIa == MIb) return false; if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) return true; // If we are dealing with two "normal" loads, we do not need an edge // between them - they could be reordered. if (!MIa->mayStore() && !MIb->mayStore()) return false; // To this point analysis is generic. From here on we do need AA. if (!AA) return true; MachineMemOperand *MMOa = *MIa->memoperands_begin(); MachineMemOperand *MMOb = *MIb->memoperands_begin(); // FIXME: Need to handle multiple memory operands to support all targets. if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) llvm_unreachable("Multiple memory operands."); // The following interface to AA is fashioned after DAGCombiner::isAlias // and operates with MachineMemOperand offset with some important // assumptions: // - LLVM fundamentally assumes flat address spaces. // - MachineOperand offset can *only* result from legalization and // cannot affect queries other than the trivial case of overlap // checking. // - These offsets never wrap and never step outside // of allocated objects. // - There should never be any negative offsets here. // // FIXME: Modify API to hide this math from "user" // FIXME: Even before we go to AA we can reason locally about some // memory objects. It can save compile time, and possibly catch some // corner cases not currently covered. assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; AliasAnalysis::AliasResult AAResult = AA->alias( AliasAnalysis::Location(MMOa->getValue(), Overlapa, MMOa->getTBAAInfo()), AliasAnalysis::Location(MMOb->getValue(), Overlapb, MMOb->getTBAAInfo())); return (AAResult != AliasAnalysis::NoAlias); } /// This recursive function iterates over chain deps of SUb looking for /// "latest" node that needs a chain edge to SUa. static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, SmallPtrSet &Visited) { if (!SUa || !SUb || SUb == ExitSU) return *Depth; // Remember visited nodes. if (!Visited.insert(SUb)) return *Depth; // If there is _some_ dependency already in place, do not // descend any further. // TODO: Need to make sure that if that dependency got eliminated or ignored // for any reason in the future, we would not violate DAG topology. // Currently it does not happen, but makes an implicit assumption about // future implementation. // // Independently, if we encounter node that is some sort of global // object (like a call) we already have full set of dependencies to it // and we can stop descending. if (SUa->isSucc(SUb) || isGlobalMemoryObject(AA, SUb->getInstr())) return *Depth; // If we do need an edge, or we have exceeded depth budget, // add that edge to the predecessors chain of SUb, // and stop descending. if (*Depth > 200 || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { SUb->addPred(SDep(SUa, SDep::MayAliasMem)); return *Depth; } // Track current depth. (*Depth)++; // Iterate over chain dependencies only. for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); I != E; ++I) if (I->isCtrl()) iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); return *Depth; } /// This function assumes that "downward" from SU there exist /// tail/leaf of already constructed DAG. It iterates downward and /// checks whether SU can be aliasing any node dominated /// by it. static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, SUnit *SU, SUnit *ExitSU, std::set &CheckList, unsigned LatencyToLoad) { if (!SU) return; SmallPtrSet Visited; unsigned Depth = 0; for (std::set::iterator I = CheckList.begin(), IE = CheckList.end(); I != IE; ++I) { if (SU == *I) continue; if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { SDep Dep(SU, SDep::MayAliasMem); Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); (*I)->addPred(Dep); } // Now go through all the chain successors and iterate from them. // Keep track of visited nodes. for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), JE = (*I)->Succs.end(); J != JE; ++J) if (J->isCtrl()) iterateChainSucc (AA, MFI, SU, J->getSUnit(), ExitSU, &Depth, Visited); } } /// Check whether two objects need a chain edge, if so, add it /// otherwise remember the rejected SU. static inline void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, SUnit *SUa, SUnit *SUb, std::set &RejectList, unsigned TrueMemOrderLatency = 0, bool isNormalMemory = false) { // If this is a false dependency, // do not add the edge, but rememeber the rejected node. if (!EnableAASchedMI || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); Dep.setLatency(TrueMemOrderLatency); SUb->addPred(Dep); } else { // Duplicate entries should be ignored. RejectList.insert(SUb); DEBUG(dbgs() << "\tReject chain dep between SU(" << SUa->NodeNum << ") and SU(" << SUb->NodeNum << ")\n"); } } /// Create an SUnit for each real instruction, numbered in top-down toplological /// order. The instruction order A < B, implies that no edge exists from B to A. /// /// Map each real instruction to its SUnit. /// /// After initSUnits, the SUnits vector cannot be resized and the scheduler may /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs /// instead of pointers. /// /// MachineScheduler relies on initSUnits numbering the nodes by their order in /// the original instruction list. void ScheduleDAGInstrs::initSUnits() { // We'll be allocating one SUnit for each real instruction in the region, // which is contained within a basic block. SUnits.reserve(BB->size()); for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { MachineInstr *MI = I; if (MI->isDebugValue()) continue; SUnit *SU = newSUnit(MI); MISUnitMap[MI] = SU; SU->isCall = MI->isCall(); SU->isCommutable = MI->isCommutable(); // Assign the Latency field of SU using target-provided information. SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); } } /// If RegPressure is non null, compute register pressure as a side effect. The /// DAG builder is an efficient place to do it because it already visits /// operands. void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, RegPressureTracker *RPTracker) { // Create an SUnit for each real instruction. initSUnits(); // We build scheduling units by walking a block's instruction list from bottom // to top. // Remember where a generic side-effecting instruction is as we procede. SUnit *BarrierChain = 0, *AliasChain = 0; // Memory references to specific known memory locations are tracked // so that they can be given more precise dependencies. We track // separately the known memory locations that may alias and those // that are known not to alias std::map AliasMemDefs, NonAliasMemDefs; std::map > AliasMemUses, NonAliasMemUses; std::set RejectMemNodes; // Remove any stale debug info; sometimes BuildSchedGraph is called again // without emitting the info from the previous call. DbgValues.clear(); FirstDbgValue = NULL; assert(Defs.empty() && Uses.empty() && "Only BuildGraph should update Defs/Uses"); Defs.setRegLimit(TRI->getNumRegs()); Uses.setRegLimit(TRI->getNumRegs()); assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); // FIXME: Allow SparseSet to reserve space for the creation of virtual // registers during scheduling. Don't artificially inflate the Universe // because we want to assert that vregs are not created during DAG building. VRegDefs.setUniverse(MRI.getNumVirtRegs()); // Model data dependencies between instructions being scheduled and the // ExitSU. addSchedBarrierDeps(); // Walk the list of instructions, from bottom moving up. MachineInstr *PrevMI = NULL; for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; MII != MIE; --MII) { MachineInstr *MI = prior(MII); if (MI && PrevMI) { DbgValues.push_back(std::make_pair(PrevMI, MI)); PrevMI = NULL; } if (MI->isDebugValue()) { PrevMI = MI; continue; } if (RPTracker) { RPTracker->recede(); assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI"); } assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() && "Cannot schedule terminators or labels!"); SUnit *SU = MISUnitMap[MI]; assert(SU && "No SUnit mapped to this MI"); // Add register-based dependencies (data, anti, and output). for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) addPhysRegDeps(SU, j); else { assert(!IsPostRA && "Virtual register encountered!"); if (MO.isDef()) addVRegDefDeps(SU, j); else if (MO.readsReg()) // ignore undef operands addVRegUseDeps(SU, j); } } // Add chain dependencies. // Chain dependencies used to enforce memory order should have // latency of 0 (except for true dependency of Store followed by // aliased Load... we estimate that with a single cycle of latency // assuming the hardware will bypass) // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable // after stack slots are lowered to actual addresses. // TODO: Use an AliasAnalysis and do real alias-analysis queries, and // produce more precise dependence information. unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; if (isGlobalMemoryObject(AA, MI)) { // Be conservative with these and add dependencies on all memory // references, even those that are known to not alias. for (std::map::iterator I = NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Barrier)); } for (std::map >::iterator I = NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) { SDep Dep(SU, SDep::Barrier); Dep.setLatency(TrueMemOrderLatency); I->second[i]->addPred(Dep); } } // Add SU to the barrier chain. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Barrier)); BarrierChain = SU; // This is a barrier event that acts as a pivotal node in the DAG, // so it is safe to clear list of exposed nodes. adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, TrueMemOrderLatency); RejectMemNodes.clear(); NonAliasMemDefs.clear(); NonAliasMemUses.clear(); // fall-through new_alias_chain: // Chain all possibly aliasing memory references though SU. if (AliasChain) { unsigned ChainLatency = 0; if (AliasChain->getInstr()->mayLoad()) ChainLatency = TrueMemOrderLatency; addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes, ChainLatency); } AliasChain = SU; for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes, TrueMemOrderLatency); for (std::map::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) addChainDependency(AA, MFI, SU, I->second, RejectMemNodes); for (std::map >::iterator I = AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes, TrueMemOrderLatency); } adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, TrueMemOrderLatency); PendingLoads.clear(); AliasMemDefs.clear(); AliasMemUses.clear(); } else if (MI->mayStore()) { bool MayAlias = true; if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A store to a specific PseudoSourceValue. Add precise dependencies. // Record the def in MemDefs, first adding a dep if there is // an existing def. std::map::iterator I = ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); std::map::iterator IE = ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) { addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true); I->second = SU; } else { if (MayAlias) AliasMemDefs[V] = SU; else NonAliasMemDefs[V] = SU; } // Handle the uses in MemUses, if there are any. std::map >::iterator J = ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); std::map >::iterator JE = ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); if (J != JE) { for (unsigned i = 0, e = J->second.size(); i != e; ++i) addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes, TrueMemOrderLatency, true); J->second.clear(); } if (MayAlias) { // Add dependencies from all the PendingLoads, i.e. loads // with no underlying object. for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes, TrueMemOrderLatency); // Add dependence on alias chain, if needed. if (AliasChain) addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes); // But we also should check dependent instructions for the // SU in question. adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, TrueMemOrderLatency); } // Add dependence on barrier chain, if needed. // There is no point to check aliasing on barrier event. Even if // SU and barrier _could_ be reordered, they should not. In addition, // we have lost all RejectMemNodes below barrier. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Barrier)); } else { // Treat all other stores conservatively. goto new_alias_chain; } if (!ExitSU.isPred(SU)) // Push store's up a bit to avoid them getting in between cmp // and branches. ExitSU.addPred(SDep(SU, SDep::Artificial)); } else if (MI->mayLoad()) { bool MayAlias = true; if (MI->isInvariantLoad(AA)) { // Invariant load, no chain dependencies needed! } else { if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A load from a specific PseudoSourceValue. Add precise dependencies. std::map::iterator I = ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); std::map::iterator IE = ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true); if (MayAlias) AliasMemUses[V].push_back(SU); else NonAliasMemUses[V].push_back(SU); } else { // A load with no underlying object. Depend on all // potentially aliasing stores. for (std::map::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) addChainDependency(AA, MFI, SU, I->second, RejectMemNodes); PendingLoads.push_back(SU); MayAlias = true; } if (MayAlias) adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); // Add dependencies on alias and barrier chains, if needed. if (MayAlias && AliasChain) addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes); if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Barrier)); } } } if (PrevMI) FirstDbgValue = PrevMI; Defs.clear(); Uses.clear(); VRegDefs.clear(); PendingLoads.clear(); } void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) SU->getInstr()->dump(); #endif } std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { std::string s; raw_string_ostream oss(s); if (SU == &EntrySU) oss << ""; else if (SU == &ExitSU) oss << ""; else SU->getInstr()->print(oss); return oss.str(); } /// Return the basic block label. It is not necessarilly unique because a block /// contains multiple scheduling regions. But it is fine for visualization. std::string ScheduleDAGInstrs::getDAGName() const { return "dag." + BB->getFullName(); } namespace { /// \brief Manage the stack used by a reverse depth-first search over the DAG. class SchedDAGReverseDFS { std::vector > DFSStack; public: bool isComplete() const { return DFSStack.empty(); } void follow(const SUnit *SU) { DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); } void advance() { ++DFSStack.back().second; } void backtrack() { DFSStack.pop_back(); } const SUnit *getCurr() const { return DFSStack.back().first; } SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } SUnit::const_pred_iterator getPredEnd() const { return getCurr()->Preds.end(); } }; } // anonymous void ScheduleDAGILP::resize(unsigned NumSUnits) { ILPValues.resize(NumSUnits); } ILPValue ScheduleDAGILP::getILP(const SUnit *SU) { return ILPValues[SU->NodeNum]; } // A leaf node has an ILP of 1/1. static ILPValue initILP(const SUnit *SU) { unsigned Cnt = SU->getInstr()->isTransient() ? 0 : 1; return ILPValue(Cnt, 1 + SU->getDepth()); } /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first /// search from this root. void ScheduleDAGILP::computeILP(const SUnit *Root) { if (!IsBottomUp) llvm_unreachable("Top-down ILP metric is unimplemnted"); SchedDAGReverseDFS DFS; // Mark a node visited by validating it. ILPValues[Root->NodeNum] = initILP(Root); DFS.follow(Root); for (;;) { // Traverse the leftmost path as far as possible. while (DFS.getPred() != DFS.getPredEnd()) { const SUnit *PredSU = DFS.getPred()->getSUnit(); DFS.advance(); // If the pred is already valid, skip it. if (ILPValues[PredSU->NodeNum].isValid()) continue; ILPValues[PredSU->NodeNum] = initILP(PredSU); DFS.follow(PredSU); } // Visit the top of the stack in postorder and backtrack. unsigned PredCount = ILPValues[DFS.getCurr()->NodeNum].InstrCount; DFS.backtrack(); if (DFS.isComplete()) break; // Add the recently finished predecessor's bottom-up descendent count. ILPValues[DFS.getCurr()->NodeNum].InstrCount += PredCount; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ILPValue::print(raw_ostream &OS) const { if (!isValid()) OS << "BADILP"; OS << InstrCount << " / " << Cycles << " = " << format("%g", ((double)InstrCount / Cycles)); } void ILPValue::dump() const { dbgs() << *this << '\n'; } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { Val.print(OS); return OS; } } // namespace llvm #endif // !NDEBUG || LLVM_ENABLE_DUMP