//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAGInstrs class, which implements re-scheduling // of MachineInstrs. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterPressure.h" #include "llvm/CodeGen/ScheduleDFS.h" #include "llvm/IR/Operator.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include using namespace llvm; #define DEBUG_TYPE "misched" static cl::opt EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Enable use of AA during MI GAD construction")); static cl::opt UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, cl::init(true), cl::desc("Enable use of TBAA during MI GAD construction")); ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo &mli, const MachineDominatorTree &mdt, bool IsPostRAFlag, bool RemoveKillFlags, LiveIntervals *lis) : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis), IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false), FirstDbgValue(nullptr) { assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); DbgValues.clear(); assert(!(IsPostRA && MRI.getNumVirtRegs()) && "Virtual registers must be removed prior to PostRA scheduling"); const TargetSubtargetInfo &ST = TM.getSubtarget(); SchedModel.init(*ST.getSchedModel(), &ST, TII); } /// getUnderlyingObjectFromInt - This is the function that does the work of /// looking through basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObjectFromInt(const Value *V) { do { if (const Operator *U = dyn_cast(V)) { // If we find a ptrtoint, we can transfer control back to the // regular getUnderlyingObjectFromInt. if (U->getOpcode() == Instruction::PtrToInt) return U->getOperand(0); // If we find an add of a constant, a multiplied value, or a phi, it's // likely that the other operand will lead us to the base // object. We don't have to worry about the case where the // object address is somehow being computed by the multiply, // because our callers only care when the result is an // identifiable object. if (U->getOpcode() != Instruction::Add || (!isa(U->getOperand(1)) && Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && !isa(U->getOperand(1)))) return V; V = U->getOperand(0); } else { return V; } assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); } while (1); } /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. static void getUnderlyingObjects(const Value *V, SmallVectorImpl &Objects) { SmallPtrSet Visited; SmallVector Working(1, V); do { V = Working.pop_back_val(); SmallVector Objs; GetUnderlyingObjects(const_cast(V), Objs); for (SmallVectorImpl::iterator I = Objs.begin(), IE = Objs.end(); I != IE; ++I) { V = *I; if (!Visited.insert(V)) continue; if (Operator::getOpcode(V) == Instruction::IntToPtr) { const Value *O = getUnderlyingObjectFromInt(cast(V)->getOperand(0)); if (O->getType()->isPointerTy()) { Working.push_back(O); continue; } } Objects.push_back(const_cast(V)); } } while (!Working.empty()); } typedef PointerUnion ValueType; typedef SmallVector, 4> UnderlyingObjectsVector; /// getUnderlyingObjectsForInstr - If this machine instr has memory reference /// information and it can be tracked to a normal reference to a known /// object, return the Value for that object. static void getUnderlyingObjectsForInstr(const MachineInstr *MI, const MachineFrameInfo *MFI, UnderlyingObjectsVector &Objects) { if (!MI->hasOneMemOperand() || (!(*MI->memoperands_begin())->getValue() && !(*MI->memoperands_begin())->getPseudoValue()) || (*MI->memoperands_begin())->isVolatile()) return; if (const PseudoSourceValue *PSV = (*MI->memoperands_begin())->getPseudoValue()) { // For now, ignore PseudoSourceValues which may alias LLVM IR values // because the code that uses this function has no way to cope with // such aliases. if (!PSV->isAliased(MFI)) { bool MayAlias = PSV->mayAlias(MFI); Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); } return; } const Value *V = (*MI->memoperands_begin())->getValue(); if (!V) return; SmallVector Objs; getUnderlyingObjects(V, Objs); for (SmallVectorImpl::iterator I = Objs.begin(), IE = Objs.end(); I != IE; ++I) { V = *I; if (!isIdentifiedObject(V)) { Objects.clear(); return; } Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); } } void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { BB = bb; } void ScheduleDAGInstrs::finishBlock() { // Subclasses should no longer refer to the old block. BB = nullptr; } /// Initialize the DAG and common scheduler state for the current scheduling /// region. This does not actually create the DAG, only clears it. The /// scheduling driver may call BuildSchedGraph multiple times per scheduling /// region. void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) { assert(bb == BB && "startBlock should set BB"); RegionBegin = begin; RegionEnd = end; NumRegionInstrs = regioninstrs; } /// Close the current scheduling region. Don't clear any state in case the /// driver wants to refer to the previous scheduling region. void ScheduleDAGInstrs::exitRegion() { // Nothing to do. } /// addSchedBarrierDeps - Add dependencies from instructions in the current /// list of instructions being scheduled to scheduling barrier by adding /// the exit SU to the register defs and use list. This is because we want to /// make sure instructions which define registers that are either used by /// the terminator or are live-out are properly scheduled. This is /// especially important when the definition latency of the return value(s) /// are too high to be hidden by the branch or when the liveout registers /// used by instructions in the fallthrough block. void ScheduleDAGInstrs::addSchedBarrierDeps() { MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; ExitSU.setInstr(ExitMI); bool AllDepKnown = ExitMI && (ExitMI->isCall() || ExitMI->isBarrier()); if (ExitMI && AllDepKnown) { // If it's a call or a barrier, add dependencies on the defs and uses of // instruction. for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = ExitMI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); else { assert(!IsPostRA && "Virtual register encountered after regalloc."); if (MO.readsReg()) // ignore undef operands addVRegUseDeps(&ExitSU, i); } } } else { // For others, e.g. fallthrough, conditional branch, assume the exit // uses all the registers that are livein to the successor blocks. assert(Uses.empty() && "Uses in set before adding deps?"); for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; if (!Uses.contains(Reg)) Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); } } } /// MO is an operand of SU's instruction that defines a physical register. Add /// data dependencies from SU to any uses of the physical register. void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); assert(MO.isDef() && "expect physreg def"); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtargetInfo &ST = TM.getSubtarget(); for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Uses.contains(*Alias)) continue; for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { SUnit *UseSU = I->SU; if (UseSU == SU) continue; // Adjust the dependence latency using operand def/use information, // then allow the target to perform its own adjustments. int UseOp = I->OpIdx; MachineInstr *RegUse = nullptr; SDep Dep; if (UseOp < 0) Dep = SDep(SU, SDep::Artificial); else { // Set the hasPhysRegDefs only for physreg defs that have a use within // the scheduling region. SU->hasPhysRegDefs = true; Dep = SDep(SU, SDep::Data, *Alias); RegUse = UseSU->getInstr(); } Dep.setLatency( SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, UseOp)); ST.adjustSchedDependency(SU, UseSU, Dep); UseSU->addPred(Dep); } } } /// addPhysRegDeps - Add register dependencies (data, anti, and output) from /// this SUnit to following instructions in the same scheduling region that /// depend the physical register referenced at OperIdx. void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { MachineInstr *MI = SU->getInstr(); MachineOperand &MO = MI->getOperand(OperIdx); // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Defs.contains(*Alias)) continue; for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { SUnit *DefSU = I->SU; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) { if (Kind == SDep::Anti) DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); else { SDep Dep(SU, Kind, /*Reg=*/*Alias); Dep.setLatency( SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); DefSU->addPred(Dep); } } } } if (!MO.isDef()) { SU->hasPhysRegUses = true; // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's uses. // Push this SUnit on the use list. Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); if (RemoveKillFlags) MO.setIsKill(false); } else { addPhysRegDataDeps(SU, OperIdx); unsigned Reg = MO.getReg(); // clear this register's use list if (Uses.contains(Reg)) Uses.eraseAll(Reg); if (!MO.isDead()) { Defs.eraseAll(Reg); } else if (SU->isCall) { // Calls will not be reordered because of chain dependencies (see // below). Since call operands are dead, calls may continue to be added // to the DefList making dependence checking quadratic in the size of // the block. Instead, we leave only one call at the back of the // DefList. Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); Reg2SUnitsMap::iterator B = P.first; Reg2SUnitsMap::iterator I = P.second; for (bool isBegin = I == B; !isBegin; /* empty */) { isBegin = (--I) == B; if (!I->SU->isCall) break; I = Defs.erase(I); } } // Defs are pushed in the order they are visited and never reordered. Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); } } /// addVRegDefDeps - Add register output and data dependencies from this SUnit /// to instructions that occur later in the same scheduling region if they read /// from or write to the virtual register defined at OperIdx. /// /// TODO: Hoist loop induction variable increments. This has to be /// reevaluated. Generally, IV scheduling should be done before coalescing. void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); unsigned Reg = MI->getOperand(OperIdx).getReg(); // Singly defined vregs do not have output/anti dependencies. // The current operand is a def, so we have at least one. // Check here if there are any others... if (MRI.hasOneDef(Reg)) return; // Add output dependence to the next nearest def of this vreg. // // Unless this definition is dead, the output dependence should be // transitively redundant with antidependencies from this definition's // uses. We're conservative for now until we have a way to guarantee the uses // are not eliminated sometime during scheduling. The output dependence edge // is also useful if output latency exceeds def-use latency. VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); if (DefI == VRegDefs.end()) VRegDefs.insert(VReg2SUnit(Reg, SU)); else { SUnit *DefSU = DefI->SU; if (DefSU != SU && DefSU != &ExitSU) { SDep Dep(SU, SDep::Output, Reg); Dep.setLatency( SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); DefSU->addPred(Dep); } DefI->SU = SU; } } /// addVRegUseDeps - Add a register data dependency if the instruction that /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a /// register antidependency from this SUnit to instructions that occur later in /// the same scheduling region if they write the virtual register. /// /// TODO: Handle ExitSU "uses" properly. void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { MachineInstr *MI = SU->getInstr(); unsigned Reg = MI->getOperand(OperIdx).getReg(); // Record this local VReg use. VReg2UseMap::iterator UI = VRegUses.find(Reg); for (; UI != VRegUses.end(); ++UI) { if (UI->SU == SU) break; } if (UI == VRegUses.end()) VRegUses.insert(VReg2SUnit(Reg, SU)); // Lookup this operand's reaching definition. assert(LIS && "vreg dependencies requires LiveIntervals"); LiveQueryResult LRQ = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); VNInfo *VNI = LRQ.valueIn(); // VNI will be valid because MachineOperand::readsReg() is checked by caller. assert(VNI && "No value to read by operand"); MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); // Phis and other noninstructions (after coalescing) have a NULL Def. if (Def) { SUnit *DefSU = getSUnit(Def); if (DefSU) { // The reaching Def lives within this scheduling region. // Create a data dependence. SDep dep(DefSU, SDep::Data, Reg); // Adjust the dependence latency using operand def/use information, then // allow the target to perform its own adjustments. int DefOp = Def->findRegisterDefOperandIdx(Reg); dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); const TargetSubtargetInfo &ST = TM.getSubtarget(); ST.adjustSchedDependency(DefSU, SU, const_cast(dep)); SU->addPred(dep); } } // Add antidependence to the following def of the vreg it uses. VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); if (DefI != VRegDefs.end() && DefI->SU != SU) DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); } /// Return true if MI is an instruction we are unable to reason about /// (like a call or something with unmodeled side effects). static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { if (MI->isCall() || MI->hasUnmodeledSideEffects() || (MI->hasOrderedMemoryRef() && (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) return true; return false; } // This MI might have either incomplete info, or known to be unsafe // to deal with (i.e. volatile object). static inline bool isUnsafeMemoryObject(MachineInstr *MI, const MachineFrameInfo *MFI) { if (!MI || MI->memoperands_empty()) return true; // We purposefully do no check for hasOneMemOperand() here // in hope to trigger an assert downstream in order to // finish implementation. if ((*MI->memoperands_begin())->isVolatile() || MI->hasUnmodeledSideEffects()) return true; if ((*MI->memoperands_begin())->getPseudoValue()) { // Similarly to getUnderlyingObjectForInstr: // For now, ignore PseudoSourceValues which may alias LLVM IR values // because the code that uses this function has no way to cope with // such aliases. return true; } const Value *V = (*MI->memoperands_begin())->getValue(); if (!V) return true; SmallVector Objs; getUnderlyingObjects(V, Objs); for (SmallVectorImpl::iterator I = Objs.begin(), IE = Objs.end(); I != IE; ++I) { // Does this pointer refer to a distinct and identifiable object? if (!isIdentifiedObject(*I)) return true; } return false; } /// This returns true if the two MIs need a chain edge betwee them. /// If these are not even memory operations, we still may need /// chain deps between them. The question really is - could /// these two MIs be reordered during scheduling from memory dependency /// point of view. static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, MachineInstr *MIa, MachineInstr *MIb) { // Cover a trivial case - no edge is need to itself. if (MIa == MIb) return false; // FIXME: Need to handle multiple memory operands to support all targets. if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) return true; if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI)) return true; // If we are dealing with two "normal" loads, we do not need an edge // between them - they could be reordered. if (!MIa->mayStore() && !MIb->mayStore()) return false; // To this point analysis is generic. From here on we do need AA. if (!AA) return true; MachineMemOperand *MMOa = *MIa->memoperands_begin(); MachineMemOperand *MMOb = *MIb->memoperands_begin(); if (!MMOa->getValue() || !MMOb->getValue()) return true; // The following interface to AA is fashioned after DAGCombiner::isAlias // and operates with MachineMemOperand offset with some important // assumptions: // - LLVM fundamentally assumes flat address spaces. // - MachineOperand offset can *only* result from legalization and // cannot affect queries other than the trivial case of overlap // checking. // - These offsets never wrap and never step outside // of allocated objects. // - There should never be any negative offsets here. // // FIXME: Modify API to hide this math from "user" // FIXME: Even before we go to AA we can reason locally about some // memory objects. It can save compile time, and possibly catch some // corner cases not currently covered. assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; AliasAnalysis::AliasResult AAResult = AA->alias( AliasAnalysis::Location(MMOa->getValue(), Overlapa, UseTBAA ? MMOa->getTBAAInfo() : nullptr), AliasAnalysis::Location(MMOb->getValue(), Overlapb, UseTBAA ? MMOb->getTBAAInfo() : nullptr)); return (AAResult != AliasAnalysis::NoAlias); } /// This recursive function iterates over chain deps of SUb looking for /// "latest" node that needs a chain edge to SUa. static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth, SmallPtrSet &Visited) { if (!SUa || !SUb || SUb == ExitSU) return *Depth; // Remember visited nodes. if (!Visited.insert(SUb)) return *Depth; // If there is _some_ dependency already in place, do not // descend any further. // TODO: Need to make sure that if that dependency got eliminated or ignored // for any reason in the future, we would not violate DAG topology. // Currently it does not happen, but makes an implicit assumption about // future implementation. // // Independently, if we encounter node that is some sort of global // object (like a call) we already have full set of dependencies to it // and we can stop descending. if (SUa->isSucc(SUb) || isGlobalMemoryObject(AA, SUb->getInstr())) return *Depth; // If we do need an edge, or we have exceeded depth budget, // add that edge to the predecessors chain of SUb, // and stop descending. if (*Depth > 200 || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { SUb->addPred(SDep(SUa, SDep::MayAliasMem)); return *Depth; } // Track current depth. (*Depth)++; // Iterate over chain dependencies only. for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); I != E; ++I) if (I->isCtrl()) iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited); return *Depth; } /// This function assumes that "downward" from SU there exist /// tail/leaf of already constructed DAG. It iterates downward and /// checks whether SU can be aliasing any node dominated /// by it. static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, SUnit *SU, SUnit *ExitSU, std::set &CheckList, unsigned LatencyToLoad) { if (!SU) return; SmallPtrSet Visited; unsigned Depth = 0; for (std::set::iterator I = CheckList.begin(), IE = CheckList.end(); I != IE; ++I) { if (SU == *I) continue; if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) { SDep Dep(SU, SDep::MayAliasMem); Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); (*I)->addPred(Dep); } // Now go through all the chain successors and iterate from them. // Keep track of visited nodes. for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), JE = (*I)->Succs.end(); J != JE; ++J) if (J->isCtrl()) iterateChainSucc (AA, MFI, SU, J->getSUnit(), ExitSU, &Depth, Visited); } } /// Check whether two objects need a chain edge, if so, add it /// otherwise remember the rejected SU. static inline void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI, SUnit *SUa, SUnit *SUb, std::set &RejectList, unsigned TrueMemOrderLatency = 0, bool isNormalMemory = false) { // If this is a false dependency, // do not add the edge, but rememeber the rejected node. if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) { SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); Dep.setLatency(TrueMemOrderLatency); SUb->addPred(Dep); } else { // Duplicate entries should be ignored. RejectList.insert(SUb); DEBUG(dbgs() << "\tReject chain dep between SU(" << SUa->NodeNum << ") and SU(" << SUb->NodeNum << ")\n"); } } /// Create an SUnit for each real instruction, numbered in top-down toplological /// order. The instruction order A < B, implies that no edge exists from B to A. /// /// Map each real instruction to its SUnit. /// /// After initSUnits, the SUnits vector cannot be resized and the scheduler may /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs /// instead of pointers. /// /// MachineScheduler relies on initSUnits numbering the nodes by their order in /// the original instruction list. void ScheduleDAGInstrs::initSUnits() { // We'll be allocating one SUnit for each real instruction in the region, // which is contained within a basic block. SUnits.reserve(NumRegionInstrs); for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { MachineInstr *MI = I; if (MI->isDebugValue()) continue; SUnit *SU = newSUnit(MI); MISUnitMap[MI] = SU; SU->isCall = MI->isCall(); SU->isCommutable = MI->isCommutable(); // Assign the Latency field of SU using target-provided information. SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); // If this SUnit uses a reserved or unbuffered resource, mark it as such. // // Reserved resources block an instruction from issuing and stall the // entire pipeline. These are identified by BufferSize=0. // // Unbuffered resources prevent execution of subsequent instructions that // require the same resources. This is used for in-order execution pipelines // within an out-of-order core. These are identified by BufferSize=1. if (SchedModel.hasInstrSchedModel()) { const MCSchedClassDesc *SC = getSchedClass(SU); for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { case 0: SU->hasReservedResource = true; break; case 1: SU->isUnbuffered = true; break; default: break; } } } } } /// If RegPressure is non-null, compute register pressure as a side effect. The /// DAG builder is an efficient place to do it because it already visits /// operands. void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, RegPressureTracker *RPTracker, PressureDiffs *PDiffs) { const TargetSubtargetInfo &ST = TM.getSubtarget(); bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI : ST.useAA(); AliasAnalysis *AAForDep = UseAA ? AA : nullptr; MISUnitMap.clear(); ScheduleDAG::clearDAG(); // Create an SUnit for each real instruction. initSUnits(); if (PDiffs) PDiffs->init(SUnits.size()); // We build scheduling units by walking a block's instruction list from bottom // to top. // Remember where a generic side-effecting instruction is as we procede. SUnit *BarrierChain = nullptr, *AliasChain = nullptr; // Memory references to specific known memory locations are tracked // so that they can be given more precise dependencies. We track // separately the known memory locations that may alias and those // that are known not to alias MapVector > AliasMemDefs, NonAliasMemDefs; MapVector > AliasMemUses, NonAliasMemUses; std::set RejectMemNodes; // Remove any stale debug info; sometimes BuildSchedGraph is called again // without emitting the info from the previous call. DbgValues.clear(); FirstDbgValue = nullptr; assert(Defs.empty() && Uses.empty() && "Only BuildGraph should update Defs/Uses"); Defs.setUniverse(TRI->getNumRegs()); Uses.setUniverse(TRI->getNumRegs()); assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); VRegUses.clear(); VRegDefs.setUniverse(MRI.getNumVirtRegs()); VRegUses.setUniverse(MRI.getNumVirtRegs()); // Model data dependencies between instructions being scheduled and the // ExitSU. addSchedBarrierDeps(); // Walk the list of instructions, from bottom moving up. MachineInstr *DbgMI = nullptr; for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; MII != MIE; --MII) { MachineInstr *MI = std::prev(MII); if (MI && DbgMI) { DbgValues.push_back(std::make_pair(DbgMI, MI)); DbgMI = nullptr; } if (MI->isDebugValue()) { DbgMI = MI; continue; } SUnit *SU = MISUnitMap[MI]; assert(SU && "No SUnit mapped to this MI"); if (RPTracker) { PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; RPTracker->recede(/*LiveUses=*/nullptr, PDiff); assert(RPTracker->getPos() == std::prev(MII) && "RPTracker can't find MI"); } assert( (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && "Cannot schedule terminators or labels!"); // Add register-based dependencies (data, anti, and output). bool HasVRegDef = false; for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TRI->isPhysicalRegister(Reg)) addPhysRegDeps(SU, j); else { assert(!IsPostRA && "Virtual register encountered!"); if (MO.isDef()) { HasVRegDef = true; addVRegDefDeps(SU, j); } else if (MO.readsReg()) // ignore undef operands addVRegUseDeps(SU, j); } } // If we haven't seen any uses in this scheduling region, create a // dependence edge to ExitSU to model the live-out latency. This is required // for vreg defs with no in-region use, and prefetches with no vreg def. // // FIXME: NumDataSuccs would be more precise than NumSuccs here. This // check currently relies on being called before adding chain deps. if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI->mayLoad())) { SDep Dep(SU, SDep::Artificial); Dep.setLatency(SU->Latency - 1); ExitSU.addPred(Dep); } // Add chain dependencies. // Chain dependencies used to enforce memory order should have // latency of 0 (except for true dependency of Store followed by // aliased Load... we estimate that with a single cycle of latency // assuming the hardware will bypass) // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable // after stack slots are lowered to actual addresses. // TODO: Use an AliasAnalysis and do real alias-analysis queries, and // produce more precise dependence information. unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; if (isGlobalMemoryObject(AA, MI)) { // Be conservative with these and add dependencies on all memory // references, even those that are known to not alias. for (MapVector >::iterator I = NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) { I->second[i]->addPred(SDep(SU, SDep::Barrier)); } } for (MapVector >::iterator I = NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) { SDep Dep(SU, SDep::Barrier); Dep.setLatency(TrueMemOrderLatency); I->second[i]->addPred(Dep); } } // Add SU to the barrier chain. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Barrier)); BarrierChain = SU; // This is a barrier event that acts as a pivotal node in the DAG, // so it is safe to clear list of exposed nodes. adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, TrueMemOrderLatency); RejectMemNodes.clear(); NonAliasMemDefs.clear(); NonAliasMemUses.clear(); // fall-through new_alias_chain: // Chain all possibly aliasing memory references though SU. if (AliasChain) { unsigned ChainLatency = 0; if (AliasChain->getInstr()->mayLoad()) ChainLatency = TrueMemOrderLatency; addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes, ChainLatency); } AliasChain = SU; for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, TrueMemOrderLatency); for (MapVector >::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes); } for (MapVector >::iterator I = AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, TrueMemOrderLatency); } adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, TrueMemOrderLatency); PendingLoads.clear(); AliasMemDefs.clear(); AliasMemUses.clear(); } else if (MI->mayStore()) { UnderlyingObjectsVector Objs; getUnderlyingObjectsForInstr(MI, MFI, Objs); if (Objs.empty()) { // Treat all other stores conservatively. goto new_alias_chain; } bool MayAlias = false; for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); K != KE; ++K) { ValueType V = K->getPointer(); bool ThisMayAlias = K->getInt(); if (ThisMayAlias) MayAlias = true; // A store to a specific PseudoSourceValue. Add precise dependencies. // Record the def in MemDefs, first adding a dep if there is // an existing def. MapVector >::iterator I = ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); MapVector >::iterator IE = ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 0, true); // If we're not using AA, then we only need one store per object. if (!AAForDep) I->second.clear(); I->second.push_back(SU); } else { if (ThisMayAlias) { if (!AAForDep) AliasMemDefs[V].clear(); AliasMemDefs[V].push_back(SU); } else { if (!AAForDep) NonAliasMemDefs[V].clear(); NonAliasMemDefs[V].push_back(SU); } } // Handle the uses in MemUses, if there are any. MapVector >::iterator J = ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); MapVector >::iterator JE = ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); if (J != JE) { for (unsigned i = 0, e = J->second.size(); i != e; ++i) addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes, TrueMemOrderLatency, true); J->second.clear(); } } if (MayAlias) { // Add dependencies from all the PendingLoads, i.e. loads // with no underlying object. for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes, TrueMemOrderLatency); // Add dependence on alias chain, if needed. if (AliasChain) addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); // But we also should check dependent instructions for the // SU in question. adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, TrueMemOrderLatency); } // Add dependence on barrier chain, if needed. // There is no point to check aliasing on barrier event. Even if // SU and barrier _could_ be reordered, they should not. In addition, // we have lost all RejectMemNodes below barrier. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Barrier)); } else if (MI->mayLoad()) { bool MayAlias = true; if (MI->isInvariantLoad(AA)) { // Invariant load, no chain dependencies needed! } else { UnderlyingObjectsVector Objs; getUnderlyingObjectsForInstr(MI, MFI, Objs); if (Objs.empty()) { // A load with no underlying object. Depend on all // potentially aliasing stores. for (MapVector >::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) for (unsigned i = 0, e = I->second.size(); i != e; ++i) addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes); PendingLoads.push_back(SU); MayAlias = true; } else { MayAlias = false; } for (UnderlyingObjectsVector::iterator J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { ValueType V = J->getPointer(); bool ThisMayAlias = J->getInt(); if (ThisMayAlias) MayAlias = true; // A load from a specific PseudoSourceValue. Add precise dependencies. MapVector >::iterator I = ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); MapVector >::iterator IE = ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) for (unsigned i = 0, e = I->second.size(); i != e; ++i) addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes, 0, true); if (ThisMayAlias) AliasMemUses[V].push_back(SU); else NonAliasMemUses[V].push_back(SU); } if (MayAlias) adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0); // Add dependencies on alias and barrier chains, if needed. if (MayAlias && AliasChain) addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes); if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Barrier)); } } } if (DbgMI) FirstDbgValue = DbgMI; Defs.clear(); Uses.clear(); VRegDefs.clear(); PendingLoads.clear(); } /// \brief Initialize register live-range state for updating kills. void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { // Start with no live registers. LiveRegs.reset(); // Examine the live-in regs of all successors. for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) { for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; // Repeat, for reg and all subregs. for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) LiveRegs.set(*SubRegs); } } } bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { // Setting kill flag... if (!MO.isKill()) { MO.setIsKill(true); return false; } // If MO itself is live, clear the kill flag... if (LiveRegs.test(MO.getReg())) { MO.setIsKill(false); return false; } // If any subreg of MO is live, then create an imp-def for that // subreg and keep MO marked as killed. MO.setIsKill(false); bool AllDead = true; const unsigned SuperReg = MO.getReg(); MachineInstrBuilder MIB(MF, MI); for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { if (LiveRegs.test(*SubRegs)) { MIB.addReg(*SubRegs, RegState::ImplicitDefine); AllDead = false; } } if(AllDead) MO.setIsKill(true); return false; } // FIXME: Reuse the LivePhysRegs utility for this. void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); LiveRegs.resize(TRI->getNumRegs()); BitVector killedRegs(TRI->getNumRegs()); startBlockForKills(MBB); // Examine block from end to start... unsigned Count = MBB->size(); for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); I != E; --Count) { MachineInstr *MI = --I; if (MI->isDebugValue()) continue; // Update liveness. Registers that are defed but not used in this // instruction are now dead. Mark register and all subregs as they // are completely defined. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegMask()) LiveRegs.clearBitsNotInMask(MO.getRegMask()); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!MO.isDef()) continue; // Ignore two-addr defs. if (MI->isRegTiedToUseOperand(i)) continue; // Repeat for reg and all subregs. for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) LiveRegs.reset(*SubRegs); } // Examine all used registers and set/clear kill flag. When a // register is used multiple times we only set the kill flag on // the first use. Don't set kill flags on undef operands. killedRegs.reset(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; unsigned Reg = MO.getReg(); if ((Reg == 0) || MRI.isReserved(Reg)) continue; bool kill = false; if (!killedRegs.test(Reg)) { kill = true; // A register is not killed if any subregs are live... for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { if (LiveRegs.test(*SubRegs)) { kill = false; break; } } // If subreg is not live, then register is killed if it became // live in this instruction if (kill) kill = !LiveRegs.test(Reg); } if (MO.isKill() != kill) { DEBUG(dbgs() << "Fixing " << MO << " in "); // Warning: toggleKillFlag may invalidate MO. toggleKillFlag(MI, MO); DEBUG(MI->dump()); } killedRegs.set(Reg); } // Mark any used register (that is not using undef) and subregs as // now live... for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; unsigned Reg = MO.getReg(); if ((Reg == 0) || MRI.isReserved(Reg)) continue; for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) LiveRegs.set(*SubRegs); } } } void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) SU->getInstr()->dump(); #endif } std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { std::string s; raw_string_ostream oss(s); if (SU == &EntrySU) oss << ""; else if (SU == &ExitSU) oss << ""; else SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true); return oss.str(); } /// Return the basic block label. It is not necessarilly unique because a block /// contains multiple scheduling regions. But it is fine for visualization. std::string ScheduleDAGInstrs::getDAGName() const { return "dag." + BB->getFullName(); } //===----------------------------------------------------------------------===// // SchedDFSResult Implementation //===----------------------------------------------------------------------===// namespace llvm { /// \brief Internal state used to compute SchedDFSResult. class SchedDFSImpl { SchedDFSResult &R; /// Join DAG nodes into equivalence classes by their subtree. IntEqClasses SubtreeClasses; /// List PredSU, SuccSU pairs that represent data edges between subtrees. std::vector > ConnectionPairs; struct RootData { unsigned NodeID; unsigned ParentNodeID; // Parent node (member of the parent subtree). unsigned SubInstrCount; // Instr count in this tree only, not children. RootData(unsigned id): NodeID(id), ParentNodeID(SchedDFSResult::InvalidSubtreeID), SubInstrCount(0) {} unsigned getSparseSetIndex() const { return NodeID; } }; SparseSet RootSet; public: SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { RootSet.setUniverse(R.DFSNodeData.size()); } /// Return true if this node been visited by the DFS traversal. /// /// During visitPostorderNode the Node's SubtreeID is assigned to the Node /// ID. Later, SubtreeID is updated but remains valid. bool isVisited(const SUnit *SU) const { return R.DFSNodeData[SU->NodeNum].SubtreeID != SchedDFSResult::InvalidSubtreeID; } /// Initialize this node's instruction count. We don't need to flag the node /// visited until visitPostorder because the DAG cannot have cycles. void visitPreorder(const SUnit *SU) { R.DFSNodeData[SU->NodeNum].InstrCount = SU->getInstr()->isTransient() ? 0 : 1; } /// Called once for each node after all predecessors are visited. Revisit this /// node's predecessors and potentially join them now that we know the ILP of /// the other predecessors. void visitPostorderNode(const SUnit *SU) { // Mark this node as the root of a subtree. It may be joined with its // successors later. R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; RootData RData(SU->NodeNum); RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; // If any predecessors are still in their own subtree, they either cannot be // joined or are large enough to remain separate. If this parent node's // total instruction count is not greater than a child subtree by at least // the subtree limit, then try to join it now since splitting subtrees is // only useful if multiple high-pressure paths are possible. unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; for (SUnit::const_pred_iterator PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { if (PI->getKind() != SDep::Data) continue; unsigned PredNum = PI->getSUnit()->NodeNum; if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) joinPredSubtree(*PI, SU, /*CheckLimit=*/false); // Either link or merge the TreeData entry from the child to the parent. if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { // If the predecessor's parent is invalid, this is a tree edge and the // current node is the parent. if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) RootSet[PredNum].ParentNodeID = SU->NodeNum; } else if (RootSet.count(PredNum)) { // The predecessor is not a root, but is still in the root set. This // must be the new parent that it was just joined to. Note that // RootSet[PredNum].ParentNodeID may either be invalid or may still be // set to the original parent. RData.SubInstrCount += RootSet[PredNum].SubInstrCount; RootSet.erase(PredNum); } } RootSet[SU->NodeNum] = RData; } /// Called once for each tree edge after calling visitPostOrderNode on the /// predecessor. Increment the parent node's instruction count and /// preemptively join this subtree to its parent's if it is small enough. void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { R.DFSNodeData[Succ->NodeNum].InstrCount += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; joinPredSubtree(PredDep, Succ); } /// Add a connection for cross edges. void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); } /// Set each node's subtree ID to the representative ID and record connections /// between trees. void finalize() { SubtreeClasses.compress(); R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); assert(SubtreeClasses.getNumClasses() == RootSet.size() && "number of roots should match trees"); for (SparseSet::const_iterator RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { unsigned TreeID = SubtreeClasses[RI->NodeID]; if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; // Note that SubInstrCount may be greater than InstrCount if we joined // subtrees across a cross edge. InstrCount will be attributed to the // original parent, while SubInstrCount will be attributed to the joined // parent. } R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; DEBUG(dbgs() << " SU(" << Idx << ") in tree " << R.DFSNodeData[Idx].SubtreeID << '\n'); } for (std::vector >::const_iterator I = ConnectionPairs.begin(), E = ConnectionPairs.end(); I != E; ++I) { unsigned PredTree = SubtreeClasses[I->first->NodeNum]; unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; if (PredTree == SuccTree) continue; unsigned Depth = I->first->getDepth(); addConnection(PredTree, SuccTree, Depth); addConnection(SuccTree, PredTree, Depth); } } protected: /// Join the predecessor subtree with the successor that is its DFS /// parent. Apply some heuristics before joining. bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, bool CheckLimit = true) { assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); // Check if the predecessor is already joined. const SUnit *PredSU = PredDep.getSUnit(); unsigned PredNum = PredSU->NodeNum; if (R.DFSNodeData[PredNum].SubtreeID != PredNum) return false; // Four is the magic number of successors before a node is considered a // pinch point. unsigned NumDataSucs = 0; for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), SE = PredSU->Succs.end(); SI != SE; ++SI) { if (SI->getKind() == SDep::Data) { if (++NumDataSucs >= 4) return false; } } if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) return false; R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; SubtreeClasses.join(Succ->NodeNum, PredNum); return true; } /// Called by finalize() to record a connection between trees. void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { if (!Depth) return; do { SmallVectorImpl &Connections = R.SubtreeConnections[FromTree]; for (SmallVectorImpl::iterator I = Connections.begin(), E = Connections.end(); I != E; ++I) { if (I->TreeID == ToTree) { I->Level = std::max(I->Level, Depth); return; } } Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); FromTree = R.DFSTreeData[FromTree].ParentTreeID; } while (FromTree != SchedDFSResult::InvalidSubtreeID); } }; } // namespace llvm namespace { /// \brief Manage the stack used by a reverse depth-first search over the DAG. class SchedDAGReverseDFS { std::vector > DFSStack; public: bool isComplete() const { return DFSStack.empty(); } void follow(const SUnit *SU) { DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); } void advance() { ++DFSStack.back().second; } const SDep *backtrack() { DFSStack.pop_back(); return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); } const SUnit *getCurr() const { return DFSStack.back().first; } SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } SUnit::const_pred_iterator getPredEnd() const { return getCurr()->Preds.end(); } }; } // anonymous static bool hasDataSucc(const SUnit *SU) { for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) return true; } return false; } /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first /// search from this root. void SchedDFSResult::compute(ArrayRef SUnits) { if (!IsBottomUp) llvm_unreachable("Top-down ILP metric is unimplemnted"); SchedDFSImpl Impl(*this); for (ArrayRef::const_iterator SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { const SUnit *SU = &*SI; if (Impl.isVisited(SU) || hasDataSucc(SU)) continue; SchedDAGReverseDFS DFS; Impl.visitPreorder(SU); DFS.follow(SU); for (;;) { // Traverse the leftmost path as far as possible. while (DFS.getPred() != DFS.getPredEnd()) { const SDep &PredDep = *DFS.getPred(); DFS.advance(); // Ignore non-data edges. if (PredDep.getKind() != SDep::Data || PredDep.getSUnit()->isBoundaryNode()) { continue; } // An already visited edge is a cross edge, assuming an acyclic DAG. if (Impl.isVisited(PredDep.getSUnit())) { Impl.visitCrossEdge(PredDep, DFS.getCurr()); continue; } Impl.visitPreorder(PredDep.getSUnit()); DFS.follow(PredDep.getSUnit()); } // Visit the top of the stack in postorder and backtrack. const SUnit *Child = DFS.getCurr(); const SDep *PredDep = DFS.backtrack(); Impl.visitPostorderNode(Child); if (PredDep) Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); if (DFS.isComplete()) break; } } Impl.finalize(); } /// The root of the given SubtreeID was just scheduled. For all subtrees /// connected to this tree, record the depth of the connection so that the /// nearest connected subtrees can be prioritized. void SchedDFSResult::scheduleTree(unsigned SubtreeID) { for (SmallVectorImpl::const_iterator I = SubtreeConnections[SubtreeID].begin(), E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { SubtreeConnectLevels[I->TreeID] = std::max(SubtreeConnectLevels[I->TreeID], I->Level); DEBUG(dbgs() << " Tree: " << I->TreeID << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ILPValue::print(raw_ostream &OS) const { OS << InstrCount << " / " << Length << " = "; if (!Length) OS << "BADILP"; else OS << format("%g", ((double)InstrCount / Length)); } void ILPValue::dump() const { dbgs() << *this << '\n'; } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { Val.print(OS); return OS; } } // namespace llvm #endif // !NDEBUG || LLVM_ENABLE_DUMP