//===-------- LegalizeFloatTypes.cpp - Legalization of float types --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements float type expansion and softening for LegalizeTypes. // Softening is the act of turning a computation in an illegal floating point // type into a computation in an integer type of the same size; also known as // "soft float". For example, turning f32 arithmetic into operations using i32. // The resulting integer value is the same as what you would get by performing // the floating point operation and bitcasting the result to the integer type. // Expansion is the act of changing a computation in an illegal type to be a // computation in two identical registers of a smaller type. For example, // implementing ppcf128 arithmetic in two f64 registers. // //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; /// GetFPLibCall - Return the right libcall for the given floating point type. static RTLIB::Libcall GetFPLibCall(EVT VT, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_PPCF128) { return VT == MVT::f32 ? Call_F32 : VT == MVT::f64 ? Call_F64 : VT == MVT::f80 ? Call_F80 : VT == MVT::ppcf128 ? Call_PPCF128 : RTLIB::UNKNOWN_LIBCALL; } //===----------------------------------------------------------------------===// // Result Float to Integer Conversion. //===----------------------------------------------------------------------===// void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) { DEBUG(dbgs() << "Soften float result " << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue R = SDValue(); switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "SoftenFloatResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to soften the result of this operator!"); case ISD::MERGE_VALUES:R = SoftenFloatRes_MERGE_VALUES(N, ResNo); break; case ISD::BITCAST: R = SoftenFloatRes_BITCAST(N); break; case ISD::BUILD_PAIR: R = SoftenFloatRes_BUILD_PAIR(N); break; case ISD::ConstantFP: R = SoftenFloatRes_ConstantFP(cast(N)); break; case ISD::EXTRACT_VECTOR_ELT: R = SoftenFloatRes_EXTRACT_VECTOR_ELT(N); break; case ISD::FABS: R = SoftenFloatRes_FABS(N); break; case ISD::FADD: R = SoftenFloatRes_FADD(N); break; case ISD::FCEIL: R = SoftenFloatRes_FCEIL(N); break; case ISD::FCOPYSIGN: R = SoftenFloatRes_FCOPYSIGN(N); break; case ISD::FCOS: R = SoftenFloatRes_FCOS(N); break; case ISD::FDIV: R = SoftenFloatRes_FDIV(N); break; case ISD::FEXP: R = SoftenFloatRes_FEXP(N); break; case ISD::FEXP2: R = SoftenFloatRes_FEXP2(N); break; case ISD::FFLOOR: R = SoftenFloatRes_FFLOOR(N); break; case ISD::FLOG: R = SoftenFloatRes_FLOG(N); break; case ISD::FLOG2: R = SoftenFloatRes_FLOG2(N); break; case ISD::FLOG10: R = SoftenFloatRes_FLOG10(N); break; case ISD::FMA: R = SoftenFloatRes_FMA(N); break; case ISD::FMUL: R = SoftenFloatRes_FMUL(N); break; case ISD::FNEARBYINT: R = SoftenFloatRes_FNEARBYINT(N); break; case ISD::FNEG: R = SoftenFloatRes_FNEG(N); break; case ISD::FP_EXTEND: R = SoftenFloatRes_FP_EXTEND(N); break; case ISD::FP_ROUND: R = SoftenFloatRes_FP_ROUND(N); break; case ISD::FP16_TO_FP32:R = SoftenFloatRes_FP16_TO_FP32(N); break; case ISD::FPOW: R = SoftenFloatRes_FPOW(N); break; case ISD::FPOWI: R = SoftenFloatRes_FPOWI(N); break; case ISD::FREM: R = SoftenFloatRes_FREM(N); break; case ISD::FRINT: R = SoftenFloatRes_FRINT(N); break; case ISD::FSIN: R = SoftenFloatRes_FSIN(N); break; case ISD::FSQRT: R = SoftenFloatRes_FSQRT(N); break; case ISD::FSUB: R = SoftenFloatRes_FSUB(N); break; case ISD::FTRUNC: R = SoftenFloatRes_FTRUNC(N); break; case ISD::LOAD: R = SoftenFloatRes_LOAD(N); break; case ISD::SELECT: R = SoftenFloatRes_SELECT(N); break; case ISD::SELECT_CC: R = SoftenFloatRes_SELECT_CC(N); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: R = SoftenFloatRes_XINT_TO_FP(N); break; case ISD::UNDEF: R = SoftenFloatRes_UNDEF(N); break; case ISD::VAARG: R = SoftenFloatRes_VAARG(N); break; } // If R is null, the sub-method took care of registering the result. if (R.getNode()) SetSoftenedFloat(SDValue(N, ResNo), R); } SDValue DAGTypeLegalizer::SoftenFloatRes_BITCAST(SDNode *N) { return BitConvertToInteger(N->getOperand(0)); } SDValue DAGTypeLegalizer::SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo) { SDValue Op = DisintegrateMERGE_VALUES(N, ResNo); return BitConvertToInteger(Op); } SDValue DAGTypeLegalizer::SoftenFloatRes_BUILD_PAIR(SDNode *N) { // Convert the inputs to integers, and build a new pair out of them. return DAG.getNode(ISD::BUILD_PAIR, N->getDebugLoc(), TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)), BitConvertToInteger(N->getOperand(0)), BitConvertToInteger(N->getOperand(1))); } SDValue DAGTypeLegalizer::SoftenFloatRes_ConstantFP(ConstantFPSDNode *N) { return DAG.getConstant(N->getValueAPF().bitcastToAPInt(), TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0))); } SDValue DAGTypeLegalizer::SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N) { SDValue NewOp = BitConvertVectorToIntegerVector(N->getOperand(0)); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NewOp.getValueType().getVectorElementType(), NewOp, N->getOperand(1)); } SDValue DAGTypeLegalizer::SoftenFloatRes_FABS(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned Size = NVT.getSizeInBits(); // Mask = ~(1 << (Size-1)) APInt API = APInt::getAllOnesValue(Size); API.clearBit(Size-1); SDValue Mask = DAG.getConstant(API, NVT); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return DAG.getNode(ISD::AND, N->getDebugLoc(), NVT, Op, Mask); } SDValue DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_PPCF128), NVT, Ops, 2, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FCEIL(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN(SDNode *N) { SDValue LHS = GetSoftenedFloat(N->getOperand(0)); SDValue RHS = BitConvertToInteger(N->getOperand(1)); DebugLoc dl = N->getDebugLoc(); EVT LVT = LHS.getValueType(); EVT RVT = RHS.getValueType(); unsigned LSize = LVT.getSizeInBits(); unsigned RSize = RVT.getSizeInBits(); // First get the sign bit of second operand. SDValue SignBit = DAG.getNode(ISD::SHL, dl, RVT, DAG.getConstant(1, RVT), DAG.getConstant(RSize - 1, TLI.getShiftAmountTy(RVT))); SignBit = DAG.getNode(ISD::AND, dl, RVT, RHS, SignBit); // Shift right or sign-extend it if the two operands have different types. int SizeDiff = RVT.getSizeInBits() - LVT.getSizeInBits(); if (SizeDiff > 0) { SignBit = DAG.getNode(ISD::SRL, dl, RVT, SignBit, DAG.getConstant(SizeDiff, TLI.getShiftAmountTy(SignBit.getValueType()))); SignBit = DAG.getNode(ISD::TRUNCATE, dl, LVT, SignBit); } else if (SizeDiff < 0) { SignBit = DAG.getNode(ISD::ANY_EXTEND, dl, LVT, SignBit); SignBit = DAG.getNode(ISD::SHL, dl, LVT, SignBit, DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy(SignBit.getValueType()))); } // Clear the sign bit of the first operand. SDValue Mask = DAG.getNode(ISD::SHL, dl, LVT, DAG.getConstant(1, LVT), DAG.getConstant(LSize - 1, TLI.getShiftAmountTy(LVT))); Mask = DAG.getNode(ISD::SUB, dl, LVT, Mask, DAG.getConstant(1, LVT)); LHS = DAG.getNode(ISD::AND, dl, LVT, LHS, Mask); // Or the value with the sign bit. return DAG.getNode(ISD::OR, dl, LVT, LHS, SignBit); } SDValue DAGTypeLegalizer::SoftenFloatRes_FCOS(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FDIV(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_PPCF128), NVT, Ops, 2, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP2(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FFLOOR(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG2(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG10(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FMA(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[3] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)), GetSoftenedFloat(N->getOperand(2)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::FMA_F32, RTLIB::FMA_F64, RTLIB::FMA_F80, RTLIB::FMA_PPCF128), NVT, Ops, 3, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_PPCF128), NVT, Ops, 2, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FNEARBYINT(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FNEG(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); // Expand Y = FNEG(X) -> Y = SUB -0.0, X SDValue Ops[2] = { DAG.getConstantFP(-0.0, N->getValueType(0)), GetSoftenedFloat(N->getOperand(0)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_PPCF128), NVT, Ops, 2, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::getFPEXT(Op.getValueType(), N->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); return MakeLibCall(LC, NVT, &Op, 1, false, N->getDebugLoc()); } // FIXME: Should we just use 'normal' FP_EXTEND / FP_TRUNC instead of special // nodes? SDValue DAGTypeLegalizer::SoftenFloatRes_FP16_TO_FP32(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = N->getOperand(0); return MakeLibCall(RTLIB::FPEXT_F16_F32, NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), N->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); return MakeLibCall(LC, NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FPOW(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_PPCF128), NVT, Ops, 2, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) { assert(N->getOperand(1).getValueType() == MVT::i32 && "Unsupported power type!"); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), N->getOperand(1) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, RTLIB::POWI_PPCF128), NVT, Ops, 2, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FREM(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::REM_F32, RTLIB::REM_F64, RTLIB::REM_F80, RTLIB::REM_PPCF128), NVT, Ops, 2, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FRINT(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FSIN(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FSQRT(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_PPCF128), NVT, Ops, 2, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_FTRUNC(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128), NVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) { LoadSDNode *L = cast(N); EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); DebugLoc dl = N->getDebugLoc(); SDValue NewL; if (L->getExtensionType() == ISD::NON_EXTLOAD) { NewL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(), NVT, dl, L->getChain(), L->getBasePtr(), L->getOffset(), L->getPointerInfo(), NVT, L->isVolatile(), L->isNonTemporal(), false, L->getAlignment()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), NewL.getValue(1)); return NewL; } // Do a non-extending load followed by FP_EXTEND. NewL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD, L->getMemoryVT(), dl, L->getChain(), L->getBasePtr(), L->getOffset(), L->getPointerInfo(), L->getMemoryVT(), L->isVolatile(), L->isNonTemporal(), false, L->getAlignment()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), NewL.getValue(1)); return BitConvertToInteger(DAG.getNode(ISD::FP_EXTEND, dl, VT, NewL)); } SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT(SDNode *N) { SDValue LHS = GetSoftenedFloat(N->getOperand(1)); SDValue RHS = GetSoftenedFloat(N->getOperand(2)); return DAG.getNode(ISD::SELECT, N->getDebugLoc(), LHS.getValueType(), N->getOperand(0),LHS,RHS); } SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT_CC(SDNode *N) { SDValue LHS = GetSoftenedFloat(N->getOperand(2)); SDValue RHS = GetSoftenedFloat(N->getOperand(3)); return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(), N->getOperand(0), N->getOperand(1), LHS, RHS, N->getOperand(4)); } SDValue DAGTypeLegalizer::SoftenFloatRes_UNDEF(SDNode *N) { return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0))); } SDValue DAGTypeLegalizer::SoftenFloatRes_VAARG(SDNode *N) { SDValue Chain = N->getOperand(0); // Get the chain. SDValue Ptr = N->getOperand(1); // Get the pointer. EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); DebugLoc dl = N->getDebugLoc(); SDValue NewVAARG; NewVAARG = DAG.getVAArg(NVT, dl, Chain, Ptr, N->getOperand(2), N->getConstantOperandVal(3)); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), NewVAARG.getValue(1)); return NewVAARG; } SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) { bool Signed = N->getOpcode() == ISD::SINT_TO_FP; EVT SVT = N->getOperand(0).getValueType(); EVT RVT = N->getValueType(0); EVT NVT = EVT(); DebugLoc dl = N->getDebugLoc(); // If the input is not legal, eg: i1 -> fp, then it needs to be promoted to // a larger type, eg: i8 -> fp. Even if it is legal, no libcall may exactly // match. Look for an appropriate libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; ++t) { NVT = (MVT::SimpleValueType)t; // The source needs to big enough to hold the operand. if (NVT.bitsGE(SVT)) LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT):RTLIB::getUINTTOFP (NVT, RVT); } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!"); // Sign/zero extend the argument if the libcall takes a larger type. SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0)); return MakeLibCall(LC, TLI.getTypeToTransformTo(*DAG.getContext(), RVT), &Op, 1, false, dl); } //===----------------------------------------------------------------------===// // Operand Float to Integer Conversion.. //===----------------------------------------------------------------------===// bool DAGTypeLegalizer::SoftenFloatOperand(SDNode *N, unsigned OpNo) { DEBUG(dbgs() << "Soften float operand " << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "SoftenFloatOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to soften this operator's operand!"); case ISD::BITCAST: Res = SoftenFloatOp_BITCAST(N); break; case ISD::BR_CC: Res = SoftenFloatOp_BR_CC(N); break; case ISD::FP_ROUND: Res = SoftenFloatOp_FP_ROUND(N); break; case ISD::FP_TO_SINT: Res = SoftenFloatOp_FP_TO_SINT(N); break; case ISD::FP_TO_UINT: Res = SoftenFloatOp_FP_TO_UINT(N); break; case ISD::FP32_TO_FP16:Res = SoftenFloatOp_FP32_TO_FP16(N); break; case ISD::SELECT_CC: Res = SoftenFloatOp_SELECT_CC(N); break; case ISD::SETCC: Res = SoftenFloatOp_SETCC(N); break; case ISD::STORE: Res = SoftenFloatOp_STORE(N, OpNo); break; } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } /// SoftenSetCCOperands - Soften the operands of a comparison. This code is /// shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, DebugLoc dl) { SDValue LHSInt = GetSoftenedFloat(NewLHS); SDValue RHSInt = GetSoftenedFloat(NewRHS); EVT VT = NewLHS.getValueType(); assert((VT == MVT::f32 || VT == MVT::f64) && "Unsupported setcc type!"); // Expand into one or more soft-fp libcall(s). RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; switch (CCCode) { case ISD::SETEQ: case ISD::SETOEQ: LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; break; case ISD::SETNE: case ISD::SETUNE: LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; break; case ISD::SETGE: case ISD::SETOGE: LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; break; case ISD::SETLT: case ISD::SETOLT: LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; break; case ISD::SETLE: case ISD::SETOLE: LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; break; case ISD::SETGT: case ISD::SETOGT: LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; break; case ISD::SETUO: LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; break; case ISD::SETO: LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; break; default: LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; switch (CCCode) { case ISD::SETONE: // SETONE = SETOLT | SETOGT LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; // Fallthrough case ISD::SETUGT: LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; break; case ISD::SETUGE: LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; break; case ISD::SETULT: LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; break; case ISD::SETULE: LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; break; case ISD::SETUEQ: LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; break; default: assert(false && "Do not know how to soften this setcc!"); } } // Use the target specific return value for comparions lib calls. EVT RetVT = TLI.getCmpLibcallReturnType(); SDValue Ops[2] = { LHSInt, RHSInt }; NewLHS = MakeLibCall(LC1, RetVT, Ops, 2, false/*sign irrelevant*/, dl); NewRHS = DAG.getConstant(0, RetVT); CCCode = TLI.getCmpLibcallCC(LC1); if (LC2 != RTLIB::UNKNOWN_LIBCALL) { SDValue Tmp = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(RetVT), NewLHS, NewRHS, DAG.getCondCode(CCCode)); NewLHS = MakeLibCall(LC2, RetVT, Ops, 2, false/*sign irrelevant*/, dl); NewLHS = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(RetVT), NewLHS, NewRHS, DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); NewRHS = SDValue(); } } SDValue DAGTypeLegalizer::SoftenFloatOp_BITCAST(SDNode *N) { return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), N->getValueType(0), GetSoftenedFloat(N->getOperand(0))); } SDValue DAGTypeLegalizer::SoftenFloatOp_FP_ROUND(SDNode *N) { EVT SVT = N->getOperand(0).getValueType(); EVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getFPROUND(SVT, RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND libcall"); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(LC, RVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatOp_BR_CC(SDNode *N) { SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); SoftenSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc()); // If SoftenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.getNode() == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)), 0); } SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_SINT(SDNode *N) { EVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!"); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(LC, RVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_UINT(SDNode *N) { EVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!"); SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(LC, RVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatOp_FP32_TO_FP16(SDNode *N) { EVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::FPROUND_F32_F16; SDValue Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(LC, RVT, &Op, 1, false, N->getDebugLoc()); } SDValue DAGTypeLegalizer::SoftenFloatOp_SELECT_CC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(4))->get(); SoftenSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc()); // If SoftenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.getNode() == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, N->getOperand(2), N->getOperand(3), DAG.getCondCode(CCCode)), 0); } SDValue DAGTypeLegalizer::SoftenFloatOp_SETCC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); SoftenSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc()); // If SoftenSetCCOperands returned a scalar, use it. if (NewRHS.getNode() == 0) { assert(NewLHS.getValueType() == N->getValueType(0) && "Unexpected setcc expansion!"); return NewLHS; } // Otherwise, update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, DAG.getCondCode(CCCode)), 0); } SDValue DAGTypeLegalizer::SoftenFloatOp_STORE(SDNode *N, unsigned OpNo) { assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); assert(OpNo == 1 && "Can only soften the stored value!"); StoreSDNode *ST = cast(N); SDValue Val = ST->getValue(); DebugLoc dl = N->getDebugLoc(); if (ST->isTruncatingStore()) // Do an FP_ROUND followed by a non-truncating store. Val = BitConvertToInteger(DAG.getNode(ISD::FP_ROUND, dl, ST->getMemoryVT(), Val, DAG.getIntPtrConstant(0))); else Val = GetSoftenedFloat(Val); return DAG.getStore(ST->getChain(), dl, Val, ST->getBasePtr(), ST->getPointerInfo(), ST->isVolatile(), ST->isNonTemporal(), ST->getAlignment()); } //===----------------------------------------------------------------------===// // Float Result Expansion //===----------------------------------------------------------------------===// /// ExpandFloatResult - This method is called when the specified result of the /// specified node is found to need expansion. At this point, the node may also /// have invalid operands or may have other results that need promotion, we just /// know that (at least) one result needs expansion. void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) { DEBUG(dbgs() << "Expand float result: "; N->dump(&DAG); dbgs() << "\n"); SDValue Lo, Hi; Lo = Hi = SDValue(); // See if the target wants to custom expand this node. if (CustomLowerNode(N, N->getValueType(ResNo), true)) return; switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "ExpandFloatResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to expand the result of this operator!"); case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break; case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; case ISD::MERGE_VALUES: ExpandRes_MERGE_VALUES(N, ResNo, Lo, Hi); break; case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break; case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break; case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break; case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break; case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break; case ISD::ConstantFP: ExpandFloatRes_ConstantFP(N, Lo, Hi); break; case ISD::FABS: ExpandFloatRes_FABS(N, Lo, Hi); break; case ISD::FADD: ExpandFloatRes_FADD(N, Lo, Hi); break; case ISD::FCEIL: ExpandFloatRes_FCEIL(N, Lo, Hi); break; case ISD::FCOPYSIGN: ExpandFloatRes_FCOPYSIGN(N, Lo, Hi); break; case ISD::FCOS: ExpandFloatRes_FCOS(N, Lo, Hi); break; case ISD::FDIV: ExpandFloatRes_FDIV(N, Lo, Hi); break; case ISD::FEXP: ExpandFloatRes_FEXP(N, Lo, Hi); break; case ISD::FEXP2: ExpandFloatRes_FEXP2(N, Lo, Hi); break; case ISD::FFLOOR: ExpandFloatRes_FFLOOR(N, Lo, Hi); break; case ISD::FLOG: ExpandFloatRes_FLOG(N, Lo, Hi); break; case ISD::FLOG2: ExpandFloatRes_FLOG2(N, Lo, Hi); break; case ISD::FLOG10: ExpandFloatRes_FLOG10(N, Lo, Hi); break; case ISD::FMA: ExpandFloatRes_FMA(N, Lo, Hi); break; case ISD::FMUL: ExpandFloatRes_FMUL(N, Lo, Hi); break; case ISD::FNEARBYINT: ExpandFloatRes_FNEARBYINT(N, Lo, Hi); break; case ISD::FNEG: ExpandFloatRes_FNEG(N, Lo, Hi); break; case ISD::FP_EXTEND: ExpandFloatRes_FP_EXTEND(N, Lo, Hi); break; case ISD::FPOW: ExpandFloatRes_FPOW(N, Lo, Hi); break; case ISD::FPOWI: ExpandFloatRes_FPOWI(N, Lo, Hi); break; case ISD::FRINT: ExpandFloatRes_FRINT(N, Lo, Hi); break; case ISD::FSIN: ExpandFloatRes_FSIN(N, Lo, Hi); break; case ISD::FSQRT: ExpandFloatRes_FSQRT(N, Lo, Hi); break; case ISD::FSUB: ExpandFloatRes_FSUB(N, Lo, Hi); break; case ISD::FTRUNC: ExpandFloatRes_FTRUNC(N, Lo, Hi); break; case ISD::LOAD: ExpandFloatRes_LOAD(N, Lo, Hi); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: ExpandFloatRes_XINT_TO_FP(N, Lo, Hi); break; } // If Lo/Hi is null, the sub-method took care of registering results etc. if (Lo.getNode()) SetExpandedFloat(SDValue(N, ResNo), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); assert(NVT.getSizeInBits() == integerPartWidth && "Do not know how to expand this float constant!"); APInt C = cast(N)->getValueAPF().bitcastToAPInt(); Lo = DAG.getConstantFP(APFloat(APInt(integerPartWidth, C.getRawData()[1])), NVT); Hi = DAG.getConstantFP(APFloat(APInt(integerPartWidth, C.getRawData()[0])), NVT); } void DAGTypeLegalizer::ExpandFloatRes_FABS(SDNode *N, SDValue &Lo, SDValue &Hi) { assert(N->getValueType(0) == MVT::ppcf128 && "Logic only correct for ppcf128!"); DebugLoc dl = N->getDebugLoc(); SDValue Tmp; GetExpandedFloat(N->getOperand(0), Lo, Tmp); Hi = DAG.getNode(ISD::FABS, dl, Tmp.getValueType(), Tmp); // Lo = Hi==fabs(Hi) ? Lo : -Lo; Lo = DAG.getNode(ISD::SELECT_CC, dl, Lo.getValueType(), Tmp, Hi, Lo, DAG.getNode(ISD::FNEG, dl, Lo.getValueType(), Lo), DAG.getCondCode(ISD::SETEQ)); } void DAGTypeLegalizer::ExpandFloatRes_FADD(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FCEIL(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::COPYSIGN_F32, RTLIB::COPYSIGN_F64, RTLIB::COPYSIGN_F80, RTLIB::COPYSIGN_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FCOS(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FDIV(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SDValue Call = MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_PPCF128), N->getValueType(0), Ops, 2, false, N->getDebugLoc()); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FEXP(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FEXP2(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FFLOOR(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::FLOOR_F32,RTLIB::FLOOR_F64, RTLIB::FLOOR_F80,RTLIB::FLOOR_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FLOG(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FLOG2(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FLOG10(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::LOG10_F32,RTLIB::LOG10_F64, RTLIB::LOG10_F80,RTLIB::LOG10_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FMA(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Ops[3] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) }; SDValue Call = MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::FMA_F32, RTLIB::FMA_F64, RTLIB::FMA_F80, RTLIB::FMA_PPCF128), N->getValueType(0), Ops, 3, false, N->getDebugLoc()); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FMUL(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SDValue Call = MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_PPCF128), N->getValueType(0), Ops, 2, false, N->getDebugLoc()); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FNEG(SDNode *N, SDValue &Lo, SDValue &Hi) { DebugLoc dl = N->getDebugLoc(); GetExpandedFloat(N->getOperand(0), Lo, Hi); Lo = DAG.getNode(ISD::FNEG, dl, Lo.getValueType(), Lo); Hi = DAG.getNode(ISD::FNEG, dl, Hi.getValueType(), Hi); } void DAGTypeLegalizer::ExpandFloatRes_FP_EXTEND(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); Hi = DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), NVT, N->getOperand(0)); Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT); } void DAGTypeLegalizer::ExpandFloatRes_FPOW(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, RTLIB::POWI_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FRINT(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FSIN(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FSQRT(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FSUB(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SDValue Call = MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_PPCF128), N->getValueType(0), Ops, 2, false, N->getDebugLoc()); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_FTRUNC(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Call = LibCallify(GetFPLibCall(N->getValueType(0), RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128), N, false); GetPairElements(Call, Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_LOAD(SDNode *N, SDValue &Lo, SDValue &Hi) { if (ISD::isNormalLoad(N)) { ExpandRes_NormalLoad(N, Lo, Hi); return; } assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); LoadSDNode *LD = cast(N); SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); DebugLoc dl = N->getDebugLoc(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), LD->getValueType(0)); assert(NVT.isByteSized() && "Expanded type not byte sized!"); assert(LD->getMemoryVT().bitsLE(NVT) && "Float type not round?"); Hi = DAG.getExtLoad(LD->getExtensionType(), dl, NVT, Chain, Ptr, LD->getPointerInfo(), LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); // Remember the chain. Chain = Hi.getValue(1); // The low part is zero. Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT); // Modified the chain - switch anything that used the old chain to use the // new one. ReplaceValueWith(SDValue(LD, 1), Chain); } void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi) { assert(N->getValueType(0) == MVT::ppcf128 && "Unsupported XINT_TO_FP!"); EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue Src = N->getOperand(0); EVT SrcVT = Src.getValueType(); bool isSigned = N->getOpcode() == ISD::SINT_TO_FP; DebugLoc dl = N->getDebugLoc(); // First do an SINT_TO_FP, whether the original was signed or unsigned. // When promoting partial word types to i32 we must honor the signedness, // though. if (SrcVT.bitsLE(MVT::i32)) { // The integer can be represented exactly in an f64. Src = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, MVT::i32, Src); Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT); Hi = DAG.getNode(ISD::SINT_TO_FP, dl, NVT, Src); } else { RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (SrcVT.bitsLE(MVT::i64)) { Src = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, MVT::i64, Src); LC = RTLIB::SINTTOFP_I64_PPCF128; } else if (SrcVT.bitsLE(MVT::i128)) { Src = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i128, Src); LC = RTLIB::SINTTOFP_I128_PPCF128; } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!"); Hi = MakeLibCall(LC, VT, &Src, 1, true, dl); GetPairElements(Hi, Lo, Hi); } if (isSigned) return; // Unsigned - fix up the SINT_TO_FP value just calculated. Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); SrcVT = Src.getValueType(); // x>=0 ? (ppcf128)(iN)x : (ppcf128)(iN)x + 2^N; N=32,64,128. static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; static const uint64_t TwoE128[] = { 0x47f0000000000000LL, 0 }; ArrayRef Parts; switch (SrcVT.getSimpleVT().SimpleTy) { default: assert(false && "Unsupported UINT_TO_FP!"); case MVT::i32: Parts = TwoE32; break; case MVT::i64: Parts = TwoE64; break; case MVT::i128: Parts = TwoE128; break; } Lo = DAG.getNode(ISD::FADD, dl, VT, Hi, DAG.getConstantFP(APFloat(APInt(128, Parts)), MVT::ppcf128)); Lo = DAG.getNode(ISD::SELECT_CC, dl, VT, Src, DAG.getConstant(0, SrcVT), Lo, Hi, DAG.getCondCode(ISD::SETLT)); GetPairElements(Lo, Lo, Hi); } //===----------------------------------------------------------------------===// // Float Operand Expansion //===----------------------------------------------------------------------===// /// ExpandFloatOperand - This method is called when the specified operand of the /// specified node is found to need expansion. At this point, all of the result /// types of the node are known to be legal, but other operands of the node may /// need promotion or expansion as well as the specified one. bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) { DEBUG(dbgs() << "Expand float operand: "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType()) == TargetLowering::Custom) Res = TLI.LowerOperation(SDValue(N, 0), DAG); if (Res.getNode() == 0) { switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "ExpandFloatOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to expand this operator's operand!"); case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break; case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break; case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break; case ISD::BR_CC: Res = ExpandFloatOp_BR_CC(N); break; case ISD::FP_ROUND: Res = ExpandFloatOp_FP_ROUND(N); break; case ISD::FP_TO_SINT: Res = ExpandFloatOp_FP_TO_SINT(N); break; case ISD::FP_TO_UINT: Res = ExpandFloatOp_FP_TO_UINT(N); break; case ISD::SELECT_CC: Res = ExpandFloatOp_SELECT_CC(N); break; case ISD::SETCC: Res = ExpandFloatOp_SETCC(N); break; case ISD::STORE: Res = ExpandFloatOp_STORE(cast(N), OpNo); break; } } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } /// FloatExpandSetCCOperands - Expand the operands of a comparison. This code /// is shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, DebugLoc dl) { SDValue LHSLo, LHSHi, RHSLo, RHSHi; GetExpandedFloat(NewLHS, LHSLo, LHSHi); GetExpandedFloat(NewRHS, RHSLo, RHSHi); assert(NewLHS.getValueType() == MVT::ppcf128 && "Unsupported setcc type!"); // FIXME: This generated code sucks. We want to generate // FCMPU crN, hi1, hi2 // BNE crN, L: // FCMPU crN, lo1, lo2 // The following can be improved, but not that much. SDValue Tmp1, Tmp2, Tmp3; Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETOEQ); Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), LHSLo, RHSLo, CCCode); Tmp3 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETUNE); Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, CCCode); Tmp1 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); NewLHS = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp3); NewRHS = SDValue(); // LHS is the result, not a compare. } SDValue DAGTypeLegalizer::ExpandFloatOp_BR_CC(SDNode *N) { SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc()); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.getNode() == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)), 0); } SDValue DAGTypeLegalizer::ExpandFloatOp_FP_ROUND(SDNode *N) { assert(N->getOperand(0).getValueType() == MVT::ppcf128 && "Logic only correct for ppcf128!"); SDValue Lo, Hi; GetExpandedFloat(N->getOperand(0), Lo, Hi); // Round it the rest of the way (e.g. to f32) if needed. return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), N->getValueType(0), Hi, N->getOperand(1)); } SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_SINT(SDNode *N) { EVT RVT = N->getValueType(0); DebugLoc dl = N->getDebugLoc(); // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on // PPC (the libcall is not available). FIXME: Do this in a less hacky way. if (RVT == MVT::i32) { assert(N->getOperand(0).getValueType() == MVT::ppcf128 && "Logic only correct for ppcf128!"); SDValue Res = DAG.getNode(ISD::FP_ROUND_INREG, dl, MVT::ppcf128, N->getOperand(0), DAG.getValueType(MVT::f64)); Res = DAG.getNode(ISD::FP_ROUND, dl, MVT::f64, Res, DAG.getIntPtrConstant(1)); return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); } RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!"); return MakeLibCall(LC, RVT, &N->getOperand(0), 1, false, dl); } SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_UINT(SDNode *N) { EVT RVT = N->getValueType(0); DebugLoc dl = N->getDebugLoc(); // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on // PPC (the libcall is not available). FIXME: Do this in a less hacky way. if (RVT == MVT::i32) { assert(N->getOperand(0).getValueType() == MVT::ppcf128 && "Logic only correct for ppcf128!"); const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; APFloat APF = APFloat(APInt(128, TwoE31)); SDValue Tmp = DAG.getConstantFP(APF, MVT::ppcf128); // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X // FIXME: generated code sucks. return DAG.getNode(ISD::SELECT_CC, dl, MVT::i32, N->getOperand(0), Tmp, DAG.getNode(ISD::ADD, dl, MVT::i32, DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, N->getOperand(0), Tmp)), DAG.getConstant(0x80000000, MVT::i32)), DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, N->getOperand(0)), DAG.getCondCode(ISD::SETGE)); } RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!"); return MakeLibCall(LC, N->getValueType(0), &N->getOperand(0), 1, false, dl); } SDValue DAGTypeLegalizer::ExpandFloatOp_SELECT_CC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(4))->get(); FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc()); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.getNode() == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, N->getOperand(2), N->getOperand(3), DAG.getCondCode(CCCode)), 0); } SDValue DAGTypeLegalizer::ExpandFloatOp_SETCC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc()); // If ExpandSetCCOperands returned a scalar, use it. if (NewRHS.getNode() == 0) { assert(NewLHS.getValueType() == N->getValueType(0) && "Unexpected setcc expansion!"); return NewLHS; } // Otherwise, update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, DAG.getCondCode(CCCode)), 0); } SDValue DAGTypeLegalizer::ExpandFloatOp_STORE(SDNode *N, unsigned OpNo) { if (ISD::isNormalStore(N)) return ExpandOp_NormalStore(N, OpNo); assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); assert(OpNo == 1 && "Can only expand the stored value so far"); StoreSDNode *ST = cast(N); SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), ST->getValue().getValueType()); assert(NVT.isByteSized() && "Expanded type not byte sized!"); assert(ST->getMemoryVT().bitsLE(NVT) && "Float type not round?"); (void)NVT; SDValue Lo, Hi; GetExpandedOp(ST->getValue(), Lo, Hi); return DAG.getTruncStore(Chain, N->getDebugLoc(), Hi, Ptr, ST->getPointerInfo(), ST->getMemoryVT(), ST->isVolatile(), ST->isNonTemporal(), ST->getAlignment()); }