//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements integer type expansion and promotion for LegalizeTypes. // Promotion is the act of changing a computation in an illegal type into a // computation in a larger type. For example, implementing i8 arithmetic in an // i32 register (often needed on powerpc). // Expansion is the act of changing a computation in an illegal type into a // computation in two identical registers of a smaller type. For example, // implementing i64 arithmetic in two i32 registers (often needed on 32-bit // targets). // //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===----------------------------------------------------------------------===// // Integer Result Promotion //===----------------------------------------------------------------------===// /// PromoteIntegerResult - This method is called when a result of a node is /// found to be in need of promotion to a larger type. At this point, the node /// may also have invalid operands or may have other results that need /// expansion, we just know that (at least) one result needs promotion. void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) { DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); // See if the target wants to custom expand this node. if (CustomLowerNode(N, N->getValueType(ResNo), true)) return; switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "PromoteIntegerResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to promote this operator!"); case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break; case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break; case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break; case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break; case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break; case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break; case ISD::Constant: Res = PromoteIntRes_Constant(N); break; case ISD::CONVERT_RNDSAT: Res = PromoteIntRes_CONVERT_RNDSAT(N); break; case ISD::CTLZ_ZERO_UNDEF: case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break; case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break; case ISD::CTTZ_ZERO_UNDEF: case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break; case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break; case ISD::LOAD: Res = PromoteIntRes_LOAD(cast(N));break; case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break; case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break; case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break; case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break; case ISD::SHL: Res = PromoteIntRes_SHL(N); break; case ISD::SIGN_EXTEND_INREG: Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break; case ISD::SRA: Res = PromoteIntRes_SRA(N); break; case ISD::SRL: Res = PromoteIntRes_SRL(N); break; case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break; case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break; case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break; case ISD::EXTRACT_SUBVECTOR: Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break; case ISD::VECTOR_SHUFFLE: Res = PromoteIntRes_VECTOR_SHUFFLE(N); break; case ISD::INSERT_VECTOR_ELT: Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break; case ISD::BUILD_VECTOR: Res = PromoteIntRes_BUILD_VECTOR(N); break; case ISD::SCALAR_TO_VECTOR: Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break; case ISD::CONCAT_VECTORS: Res = PromoteIntRes_CONCAT_VECTORS(N); break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break; case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break; case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADD: case ISD::SUB: case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break; case ISD::SDIV: case ISD::SREM: Res = PromoteIntRes_SDIV(N); break; case ISD::UDIV: case ISD::UREM: Res = PromoteIntRes_UDIV(N); break; case ISD::SADDO: case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break; case ISD::UADDO: case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break; case ISD::SMULO: case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break; case ISD::ATOMIC_LOAD: Res = PromoteIntRes_Atomic0(cast(N)); break; case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_SWAP: Res = PromoteIntRes_Atomic1(cast(N)); break; case ISD::ATOMIC_CMP_SWAP: Res = PromoteIntRes_Atomic2(cast(N)); break; } // If the result is null then the sub-method took care of registering it. if (Res.getNode()) SetPromotedInteger(SDValue(N, ResNo), Res); } SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo) { SDValue Op = DisintegrateMERGE_VALUES(N, ResNo); return GetPromotedInteger(Op); } SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) { // Sign-extend the new bits, and continue the assertion. SDValue Op = SExtPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::AssertSext, SDLoc(N), Op.getValueType(), Op, N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) { // Zero the new bits, and continue the assertion. SDValue Op = ZExtPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::AssertZext, SDLoc(N), Op.getValueType(), Op, N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) { EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(), ResVT, N->getChain(), N->getBasePtr(), N->getMemOperand(), N->getOrdering(), N->getSynchScope()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); return Res; } SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) { SDValue Op2 = GetPromotedInteger(N->getOperand(2)); SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(), N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(), N->getOrdering(), N->getSynchScope()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); return Res; } SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) { SDValue Op2 = GetPromotedInteger(N->getOperand(2)); SDValue Op3 = GetPromotedInteger(N->getOperand(3)); SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(), N->getChain(), N->getBasePtr(), Op2, Op3, N->getMemOperand(), N->getOrdering(), N->getSynchScope()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); return Res; } SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) { SDValue InOp = N->getOperand(0); EVT InVT = InOp.getValueType(); EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT); EVT OutVT = N->getValueType(0); EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); SDLoc dl(N); switch (getTypeAction(InVT)) { case TargetLowering::TypeLegal: break; case TargetLowering::TypePromoteInteger: if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector()) // The input promotes to the same size. Convert the promoted value. return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp)); break; case TargetLowering::TypeSoftenFloat: // Promote the integer operand by hand. return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp)); case TargetLowering::TypeExpandInteger: case TargetLowering::TypeExpandFloat: break; case TargetLowering::TypeScalarizeVector: // Convert the element to an integer and promote it by hand. if (!NOutVT.isVector()) return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, BitConvertToInteger(GetScalarizedVector(InOp))); break; case TargetLowering::TypeSplitVector: { // For example, i32 = BITCAST v2i16 on alpha. Convert the split // pieces of the input into integers and reassemble in the final type. SDValue Lo, Hi; GetSplitVector(N->getOperand(0), Lo, Hi); Lo = BitConvertToInteger(Lo); Hi = BitConvertToInteger(Hi); if (TLI.isBigEndian()) std::swap(Lo, Hi); InOp = DAG.getNode(ISD::ANY_EXTEND, dl, EVT::getIntegerVT(*DAG.getContext(), NOutVT.getSizeInBits()), JoinIntegers(Lo, Hi)); return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp); } case TargetLowering::TypeWidenVector: // The input is widened to the same size. Convert to the widened value. // Make sure that the outgoing value is not a vector, because this would // make us bitcast between two vectors which are legalized in different ways. if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector()) return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp)); } return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, CreateStackStoreLoad(InOp, OutVT)); } SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); EVT OVT = N->getValueType(0); EVT NVT = Op.getValueType(); SDLoc dl(N); unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op), DAG.getConstant(DiffBits, TLI.getPointerTy())); } SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) { // The pair element type may be legal, or may not promote to the same type as // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases. return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)), JoinIntegers(N->getOperand(0), N->getOperand(1))); } SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) { EVT VT = N->getValueType(0); // FIXME there is no actual debug info here SDLoc dl(N); // Zero extend things like i1, sign extend everything else. It shouldn't // matter in theory which one we pick, but this tends to give better code? unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; SDValue Result = DAG.getNode(Opc, dl, TLI.getTypeToTransformTo(*DAG.getContext(), VT), SDValue(N, 0)); assert(isa(Result) && "Didn't constant fold ext?"); return Result; } SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) { ISD::CvtCode CvtCode = cast(N)->getCvtCode(); assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) && "can only promote integers"); EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); return DAG.getConvertRndSat(OutVT, SDLoc(N), N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), N->getOperand(4), CvtCode); } SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) { // Zero extend to the promoted type and do the count there. SDValue Op = ZExtPromotedInteger(N->getOperand(0)); SDLoc dl(N); EVT OVT = N->getValueType(0); EVT NVT = Op.getValueType(); Op = DAG.getNode(N->getOpcode(), dl, NVT, Op); // Subtract off the extra leading bits in the bigger type. return DAG.getNode(ISD::SUB, dl, NVT, Op, DAG.getConstant(NVT.getSizeInBits() - OVT.getSizeInBits(), NVT)); } SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) { // Zero extend to the promoted type and do the count there. SDValue Op = ZExtPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op); } SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); EVT OVT = N->getValueType(0); EVT NVT = Op.getValueType(); SDLoc dl(N); if (N->getOpcode() == ISD::CTTZ) { // The count is the same in the promoted type except if the original // value was zero. This can be handled by setting the bit just off // the top of the original type. APInt TopBit(NVT.getSizeInBits(), 0); TopBit.setBit(OVT.getSizeInBits()); Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT)); } return DAG.getNode(N->getOpcode(), dl, NVT, Op); } SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) { SDLoc dl(N); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0), N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned NewOpc = N->getOpcode(); SDLoc dl(N); // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is // not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT // and SINT conversions are Custom, there is no way to tell which is // preferable. We choose SINT because that's the right thing on PPC.) if (N->getOpcode() == ISD::FP_TO_UINT && !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) NewOpc = ISD::FP_TO_SINT; SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0)); // Assert that the converted value fits in the original type. If it doesn't // (eg: because the value being converted is too big), then the result of the // original operation was undefined anyway, so the assert is still correct. return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext : ISD::AssertSext, dl, NVT, Res, DAG.getValueType(N->getValueType(0).getScalarType())); } SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0)); return DAG.getNode(ISD::AssertZext, dl, NVT, Res, DAG.getValueType(N->getValueType(0))); } SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); if (getTypeAction(N->getOperand(0).getValueType()) == TargetLowering::TypePromoteInteger) { SDValue Res = GetPromotedInteger(N->getOperand(0)); assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!"); // If the result and operand types are the same after promotion, simplify // to an in-register extension. if (NVT == Res.getValueType()) { // The high bits are not guaranteed to be anything. Insert an extend. if (N->getOpcode() == ISD::SIGN_EXTEND) return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res, DAG.getValueType(N->getOperand(0).getValueType())); if (N->getOpcode() == ISD::ZERO_EXTEND) return DAG.getZeroExtendInReg(Res, dl, N->getOperand(0).getValueType().getScalarType()); assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!"); return Res; } } // Otherwise, just extend the original operand all the way to the larger type. return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0)); } SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) { assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType(); SDLoc dl(N); SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(), N->getMemoryVT(), N->getMemOperand()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); return Res; } /// Promote the overflow flag of an overflowing arithmetic node. SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) { // Simply change the return type of the boolean result. EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1)); EVT ValueVTs[] = { N->getValueType(0), NVT }; SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N), DAG.getVTList(ValueVTs, 2), Ops, 2); // Modified the sum result - switch anything that used the old sum to use // the new one. ReplaceValueWith(SDValue(N, 0), Res); return SDValue(Res.getNode(), 1); } SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) { if (ResNo == 1) return PromoteIntRes_Overflow(N); // The operation overflowed iff the result in the larger type is not the // sign extension of its truncation to the original type. SDValue LHS = SExtPromotedInteger(N->getOperand(0)); SDValue RHS = SExtPromotedInteger(N->getOperand(1)); EVT OVT = N->getOperand(0).getValueType(); EVT NVT = LHS.getValueType(); SDLoc dl(N); // Do the arithmetic in the larger type. unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB; SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS); // Calculate the overflow flag: sign extend the arithmetic result from // the original type. SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res, DAG.getValueType(OVT)); // Overflowed if and only if this is not equal to Res. Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE); // Use the calculated overflow everywhere. ReplaceValueWith(SDValue(N, 1), Ofl); return Res; } SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) { // Sign extend the input. SDValue LHS = SExtPromotedInteger(N->getOperand(0)); SDValue RHS = SExtPromotedInteger(N->getOperand(1)); return DAG.getNode(N->getOpcode(), SDLoc(N), LHS.getValueType(), LHS, RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) { SDValue LHS = GetPromotedInteger(N->getOperand(1)); SDValue RHS = GetPromotedInteger(N->getOperand(2)); return DAG.getSelect(SDLoc(N), LHS.getValueType(), N->getOperand(0), LHS, RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) { SDValue Mask = N->getOperand(0); EVT OpTy = N->getOperand(1).getValueType(); // Promote all the way up to the canonical SetCC type. Mask = PromoteTargetBoolean(Mask, getSetCCResultType(OpTy)); SDValue LHS = GetPromotedInteger(N->getOperand(1)); SDValue RHS = GetPromotedInteger(N->getOperand(2)); return DAG.getNode(ISD::VSELECT, SDLoc(N), LHS.getValueType(), Mask, LHS, RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) { SDValue LHS = GetPromotedInteger(N->getOperand(2)); SDValue RHS = GetPromotedInteger(N->getOperand(3)); return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(), N->getOperand(0), N->getOperand(1), LHS, RHS, N->getOperand(4)); } SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) { EVT SVT = getSetCCResultType(N->getOperand(0).getValueType()); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); // Only use the result of getSetCCResultType if it is legal, // otherwise just use the promoted result type (NVT). if (!TLI.isTypeLegal(SVT)) SVT = NVT; SDLoc dl(N); assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() && "Vector compare must return a vector result!"); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getValueType() != RHS.getValueType()) { if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger && !LHS.getValueType().isVector()) LHS = GetPromotedInteger(LHS); if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger && !RHS.getValueType().isVector()) RHS = GetPromotedInteger(RHS); } // Get the SETCC result using the canonical SETCC type. SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, LHS, RHS, N->getOperand(2)); assert(NVT.bitsLE(SVT) && "Integer type overpromoted?"); // Convert to the expected type. return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC); } SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) { SDValue Res = GetPromotedInteger(N->getOperand(0)); SDValue Amt = N->getOperand(1); Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt; return DAG.getNode(ISD::SHL, SDLoc(N), Res.getValueType(), Res, Amt); } SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), Op.getValueType(), Op, N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) { // The input may have strange things in the top bits of the registers, but // these operations don't care. They may have weird bits going out, but // that too is okay if they are integer operations. SDValue LHS = GetPromotedInteger(N->getOperand(0)); SDValue RHS = GetPromotedInteger(N->getOperand(1)); return DAG.getNode(N->getOpcode(), SDLoc(N), LHS.getValueType(), LHS, RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) { // The input value must be properly sign extended. SDValue Res = SExtPromotedInteger(N->getOperand(0)); SDValue Amt = N->getOperand(1); Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt; return DAG.getNode(ISD::SRA, SDLoc(N), Res.getValueType(), Res, Amt); } SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) { // The input value must be properly zero extended. SDValue Res = ZExtPromotedInteger(N->getOperand(0)); SDValue Amt = N->getOperand(1); Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt; return DAG.getNode(ISD::SRL, SDLoc(N), Res.getValueType(), Res, Amt); } SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Res; SDValue InOp = N->getOperand(0); SDLoc dl(N); switch (getTypeAction(InOp.getValueType())) { default: llvm_unreachable("Unknown type action!"); case TargetLowering::TypeLegal: case TargetLowering::TypeExpandInteger: Res = InOp; break; case TargetLowering::TypePromoteInteger: Res = GetPromotedInteger(InOp); break; case TargetLowering::TypeSplitVector: EVT InVT = InOp.getValueType(); assert(InVT.isVector() && "Cannot split scalar types"); unsigned NumElts = InVT.getVectorNumElements(); assert(NumElts == NVT.getVectorNumElements() && "Dst and Src must have the same number of elements"); assert(isPowerOf2_32(NumElts) && "Promoted vector type must be a power of two"); SDValue EOp1, EOp2; GetSplitVector(InOp, EOp1, EOp2); EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(), NumElts/2); EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1); EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2); } // Truncate to NVT instead of VT return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res); } SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) { if (ResNo == 1) return PromoteIntRes_Overflow(N); // The operation overflowed iff the result in the larger type is not the // zero extension of its truncation to the original type. SDValue LHS = ZExtPromotedInteger(N->getOperand(0)); SDValue RHS = ZExtPromotedInteger(N->getOperand(1)); EVT OVT = N->getOperand(0).getValueType(); EVT NVT = LHS.getValueType(); SDLoc dl(N); // Do the arithmetic in the larger type. unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB; SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS); // Calculate the overflow flag: zero extend the arithmetic result from // the original type. SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT); // Overflowed if and only if this is not equal to Res. Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE); // Use the calculated overflow everywhere. ReplaceValueWith(SDValue(N, 1), Ofl); return Res; } SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) { // Promote the overflow bit trivially. if (ResNo == 1) return PromoteIntRes_Overflow(N); SDValue LHS = N->getOperand(0), RHS = N->getOperand(1); SDLoc DL(N); EVT SmallVT = LHS.getValueType(); // To determine if the result overflowed in a larger type, we extend the // input to the larger type, do the multiply (checking if it overflows), // then also check the high bits of the result to see if overflow happened // there. if (N->getOpcode() == ISD::SMULO) { LHS = SExtPromotedInteger(LHS); RHS = SExtPromotedInteger(RHS); } else { LHS = ZExtPromotedInteger(LHS); RHS = ZExtPromotedInteger(RHS); } SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1)); SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS); // Overflow occurred if it occurred in the larger type, or if the high part // of the result does not zero/sign-extend the low part. Check this second // possibility first. SDValue Overflow; if (N->getOpcode() == ISD::UMULO) { // Unsigned overflow occurred if the high part is non-zero. SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul, DAG.getIntPtrConstant(SmallVT.getSizeInBits())); Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi, DAG.getConstant(0, Hi.getValueType()), ISD::SETNE); } else { // Signed overflow occurred if the high part does not sign extend the low. SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(), Mul, DAG.getValueType(SmallVT)); Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE); } // The only other way for overflow to occur is if the multiplication in the // larger type itself overflowed. Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow, SDValue(Mul.getNode(), 1)); // Use the calculated overflow everywhere. ReplaceValueWith(SDValue(N, 1), Overflow); return Mul; } SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) { // Zero extend the input. SDValue LHS = ZExtPromotedInteger(N->getOperand(0)); SDValue RHS = ZExtPromotedInteger(N->getOperand(1)); return DAG.getNode(N->getOpcode(), SDLoc(N), LHS.getValueType(), LHS, RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) { return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0))); } SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) { SDValue Chain = N->getOperand(0); // Get the chain. SDValue Ptr = N->getOperand(1); // Get the pointer. EVT VT = N->getValueType(0); SDLoc dl(N); MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT); unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT); // The argument is passed as NumRegs registers of type RegVT. SmallVector Parts(NumRegs); for (unsigned i = 0; i < NumRegs; ++i) { Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2), N->getConstantOperandVal(3)); Chain = Parts[i].getValue(1); } // Handle endianness of the load. if (TLI.isBigEndian()) std::reverse(Parts.begin(), Parts.end()); // Assemble the parts in the promoted type. EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]); for (unsigned i = 1; i < NumRegs; ++i) { SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]); // Shift it to the right position and "or" it in. Part = DAG.getNode(ISD::SHL, dl, NVT, Part, DAG.getConstant(i * RegVT.getSizeInBits(), TLI.getPointerTy())); Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part); } // Modified the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Chain); return Res; } //===----------------------------------------------------------------------===// // Integer Operand Promotion //===----------------------------------------------------------------------===// /// PromoteIntegerOperand - This method is called when the specified operand of /// the specified node is found to need promotion. At this point, all of the /// result types of the node are known to be legal, but other operands of the /// node may need promotion or expansion as well as the specified one. bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) { DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) return false; switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to promote this operator's operand!"); case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break; case ISD::ATOMIC_STORE: Res = PromoteIntOp_ATOMIC_STORE(cast(N)); break; case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break; case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break; case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break; case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break; case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break; case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break; case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break; case ISD::CONVERT_RNDSAT: Res = PromoteIntOp_CONVERT_RNDSAT(N); break; case ISD::INSERT_VECTOR_ELT: Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break; case ISD::SCALAR_TO_VECTOR: Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break; case ISD::VSELECT: case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break; case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break; case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break; case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break; case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break; case ISD::STORE: Res = PromoteIntOp_STORE(cast(N), OpNo); break; case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break; case ISD::FP16_TO_FP32: case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break; case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: Res = PromoteIntOp_Shift(N); break; } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } /// PromoteSetCCOperands - Promote the operands of a comparison. This code is /// shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS, ISD::CondCode CCCode) { // We have to insert explicit sign or zero extends. Note that we could // insert sign extends for ALL conditions, but zero extend is cheaper on // many machines (an AND instead of two shifts), so prefer it. switch (CCCode) { default: llvm_unreachable("Unknown integer comparison!"); case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGE: case ISD::SETUGT: case ISD::SETULE: case ISD::SETULT: // ALL of these operations will work if we either sign or zero extend // the operands (including the unsigned comparisons!). Zero extend is // usually a simpler/cheaper operation, so prefer it. NewLHS = ZExtPromotedInteger(NewLHS); NewRHS = ZExtPromotedInteger(NewRHS); break; case ISD::SETGE: case ISD::SETGT: case ISD::SETLT: case ISD::SETLE: NewLHS = SExtPromotedInteger(NewLHS); NewRHS = SExtPromotedInteger(NewRHS); break; } } SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op); } SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) { SDValue Op2 = GetPromotedInteger(N->getOperand(2)); return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(), N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(), N->getOrdering(), N->getSynchScope()); } SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) { // This should only occur in unusual situations like bitcasting to an // x86_fp80, so just turn it into a store+load return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0)); } SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) { assert(OpNo == 2 && "Don't know how to promote this operand!"); SDValue LHS = N->getOperand(2); SDValue RHS = N->getOperand(3); PromoteSetCCOperands(LHS, RHS, cast(N->getOperand(1))->get()); // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always // legal types. return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), LHS, RHS, N->getOperand(4)), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) { assert(OpNo == 1 && "only know how to promote condition"); // Promote all the way up to the canonical SetCC type. EVT SVT = getSetCCResultType(MVT::Other); SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT); // The chain (Op#0) and basic block destination (Op#2) are always legal types. return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond, N->getOperand(2)), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) { // Since the result type is legal, the operands must promote to it. EVT OVT = N->getOperand(0).getValueType(); SDValue Lo = ZExtPromotedInteger(N->getOperand(0)); SDValue Hi = GetPromotedInteger(N->getOperand(1)); assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?"); SDLoc dl(N); Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi, DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy())); return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi); } SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) { // The vector type is legal but the element type is not. This implies // that the vector is a power-of-two in length and that the element // type does not have a strange size (eg: it is not i1). EVT VecVT = N->getValueType(0); unsigned NumElts = VecVT.getVectorNumElements(); assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) && "Legal vector of one illegal element?"); // Promote the inserted value. The type does not need to match the // vector element type. Check that any extra bits introduced will be // truncated away. assert(N->getOperand(0).getValueType().getSizeInBits() >= N->getValueType(0).getVectorElementType().getSizeInBits() && "Type of inserted value narrower than vector element type!"); SmallVector NewOps; for (unsigned i = 0; i < NumElts; ++i) NewOps.push_back(GetPromotedInteger(N->getOperand(i))); return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) { ISD::CvtCode CvtCode = cast(N)->getCvtCode(); assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) && "can only promote integer arguments"); SDValue InOp = GetPromotedInteger(N->getOperand(0)); return DAG.getConvertRndSat(N->getValueType(0), SDLoc(N), InOp, N->getOperand(1), N->getOperand(2), N->getOperand(3), N->getOperand(4), CvtCode); } SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo) { if (OpNo == 1) { // Promote the inserted value. This is valid because the type does not // have to match the vector element type. // Check that any extra bits introduced will be truncated away. assert(N->getOperand(1).getValueType().getSizeInBits() >= N->getValueType(0).getVectorElementType().getSizeInBits() && "Type of inserted value narrower than vector element type!"); return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), GetPromotedInteger(N->getOperand(1)), N->getOperand(2)), 0); } assert(OpNo == 2 && "Different operand and result vector types?"); // Promote the index. SDValue Idx = DAG.getZExtOrTrunc(N->getOperand(2), SDLoc(N), TLI.getVectorIdxTy()); return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), Idx), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) { // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote // the operand in place. return SDValue(DAG.UpdateNodeOperands(N, GetPromotedInteger(N->getOperand(0))), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) { assert(OpNo == 0 && "Only know how to promote the condition!"); SDValue Cond = N->getOperand(0); EVT OpTy = N->getOperand(1).getValueType(); // Promote all the way up to the canonical SetCC type. EVT SVT = getSetCCResultType(N->getOpcode() == ISD::SELECT ? OpTy.getScalarType() : OpTy); Cond = PromoteTargetBoolean(Cond, SVT); return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1), N->getOperand(2)), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) { assert(OpNo == 0 && "Don't know how to promote this operand!"); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); PromoteSetCCOperands(LHS, RHS, cast(N->getOperand(4))->get()); // The CC (#4) and the possible return values (#2 and #3) have legal types. return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2), N->getOperand(3), N->getOperand(4)), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) { assert(OpNo == 0 && "Don't know how to promote this operand!"); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); PromoteSetCCOperands(LHS, RHS, cast(N->getOperand(2))->get()); // The CC (#2) is always legal. return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) { return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), ZExtPromotedInteger(N->getOperand(1))), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); SDLoc dl(N); Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op); return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op, DAG.getValueType(N->getOperand(0).getValueType())); } SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) { return SDValue(DAG.UpdateNodeOperands(N, SExtPromotedInteger(N->getOperand(0))), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){ assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); SDValue Ch = N->getChain(), Ptr = N->getBasePtr(); SDLoc dl(N); SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value. // Truncate the value and store the result. return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getMemoryVT(), N->getMemOperand()); } SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op); } SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) { return SDValue(DAG.UpdateNodeOperands(N, ZExtPromotedInteger(N->getOperand(0))), 0); } SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) { SDLoc dl(N); SDValue Op = GetPromotedInteger(N->getOperand(0)); Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op); return DAG.getZeroExtendInReg(Op, dl, N->getOperand(0).getValueType().getScalarType()); } //===----------------------------------------------------------------------===// // Integer Result Expansion //===----------------------------------------------------------------------===// /// ExpandIntegerResult - This method is called when the specified result of the /// specified node is found to need expansion. At this point, the node may also /// have invalid operands or may have other results that need promotion, we just /// know that (at least) one result needs expansion. void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) { DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n"); SDValue Lo, Hi; Lo = Hi = SDValue(); // See if the target wants to custom expand this node. if (CustomLowerNode(N, N->getValueType(ResNo), true)) return; switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "ExpandIntegerResult #" << ResNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to expand the result of this operator!"); case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break; case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break; case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break; case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break; case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break; case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break; case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break; case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break; case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break; case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break; case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break; case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break; case ISD::CTLZ_ZERO_UNDEF: case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break; case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break; case ISD::CTTZ_ZERO_UNDEF: case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break; case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break; case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break; case ISD::LOAD: ExpandIntRes_LOAD(cast(N), Lo, Hi); break; case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break; case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break; case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break; case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break; case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break; case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break; case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break; case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break; case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break; case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break; case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_SWAP: case ISD::ATOMIC_CMP_SWAP: { std::pair Tmp = ExpandAtomic(N); SplitInteger(Tmp.first, Lo, Hi); ReplaceValueWith(SDValue(N, 1), Tmp.second); break; } case ISD::AND: case ISD::OR: case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break; case ISD::ADD: case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break; case ISD::ADDC: case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break; case ISD::ADDE: case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break; case ISD::SADDO: case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break; case ISD::UADDO: case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break; case ISD::UMULO: case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break; } // If Lo/Hi is null, the sub-method took care of registering results etc. if (Lo.getNode()) SetExpandedInteger(SDValue(N, ResNo), Lo, Hi); } /// Lower an atomic node to the appropriate builtin call. std::pair DAGTypeLegalizer::ExpandAtomic(SDNode *Node) { unsigned Opc = Node->getOpcode(); MVT VT = cast(Node)->getMemoryVT().getSimpleVT(); RTLIB::Libcall LC; switch (Opc) { default: llvm_unreachable("Unhandled atomic intrinsic Expand!"); case ISD::ATOMIC_SWAP: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; case MVT::i128:LC = RTLIB::SYNC_LOCK_TEST_AND_SET_16;break; } break; case ISD::ATOMIC_CMP_SWAP: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; case MVT::i128:LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16;break; } break; case ISD::ATOMIC_LOAD_ADD: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break; } break; case ISD::ATOMIC_LOAD_SUB: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break; } break; case ISD::ATOMIC_LOAD_AND: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break; } break; case ISD::ATOMIC_LOAD_OR: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break; } break; case ISD::ATOMIC_LOAD_XOR: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break; } break; case ISD::ATOMIC_LOAD_NAND: switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type for atomic!"); case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break; } break; } return ExpandChainLibCall(LC, Node, false); } /// ExpandShiftByConstant - N is a shift by a value that needs to be expanded, /// and the shift amount is a constant 'Amt'. Expand the operation. void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt, SDValue &Lo, SDValue &Hi) { SDLoc DL(N); // Expand the incoming operand to be shifted, so that we have its parts SDValue InL, InH; GetExpandedInteger(N->getOperand(0), InL, InH); EVT NVT = InL.getValueType(); unsigned VTBits = N->getValueType(0).getSizeInBits(); unsigned NVTBits = NVT.getSizeInBits(); EVT ShTy = N->getOperand(1).getValueType(); if (N->getOpcode() == ISD::SHL) { if (Amt > VTBits) { Lo = Hi = DAG.getConstant(0, NVT); } else if (Amt > NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy)); } else if (Amt == NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = InL; } else if (Amt == 1 && TLI.isOperationLegalOrCustom(ISD::ADDC, TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) { // Emit this X << 1 as X+X. SDVTList VTList = DAG.getVTList(NVT, MVT::Glue); SDValue LoOps[2] = { InL, InL }; Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2); SDValue HiOps[3] = { InH, InH, Lo.getValue(1) }; Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy)); Hi = DAG.getNode(ISD::OR, DL, NVT, DAG.getNode(ISD::SHL, DL, NVT, InH, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SRL, DL, NVT, InL, DAG.getConstant(NVTBits-Amt, ShTy))); } return; } if (N->getOpcode() == ISD::SRL) { if (Amt > VTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getConstant(0, NVT); } else if (Amt > NVTBits) { Lo = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy)); Hi = DAG.getConstant(0, NVT); } else if (Amt == NVTBits) { Lo = InH; Hi = DAG.getConstant(0, NVT); } else { Lo = DAG.getNode(ISD::OR, DL, NVT, DAG.getNode(ISD::SRL, DL, NVT, InL, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SHL, DL, NVT, InH, DAG.getConstant(NVTBits-Amt, ShTy))); Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy)); } return; } assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); if (Amt > VTBits) { Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Amt > NVTBits) { Lo = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt-NVTBits, ShTy)); Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Amt == NVTBits) { Lo = InH; Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else { Lo = DAG.getNode(ISD::OR, DL, NVT, DAG.getNode(ISD::SRL, DL, NVT, InL, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SHL, DL, NVT, InH, DAG.getConstant(NVTBits-Amt, ShTy))); Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy)); } } /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify /// this shift based on knowledge of the high bit of the shift amount. If we /// can tell this, we know that it is >= 32 or < 32, without knowing the actual /// shift amount. bool DAGTypeLegalizer:: ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Amt = N->getOperand(1); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); EVT ShTy = Amt.getValueType(); unsigned ShBits = ShTy.getScalarType().getSizeInBits(); unsigned NVTBits = NVT.getScalarType().getSizeInBits(); assert(isPowerOf2_32(NVTBits) && "Expanded integer type size not a power of two!"); SDLoc dl(N); APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); APInt KnownZero, KnownOne; DAG.ComputeMaskedBits(N->getOperand(1), KnownZero, KnownOne); // If we don't know anything about the high bits, exit. if (((KnownZero|KnownOne) & HighBitMask) == 0) return false; // Get the incoming operand to be shifted. SDValue InL, InH; GetExpandedInteger(N->getOperand(0), InL, InH); // If we know that any of the high bits of the shift amount are one, then we // can do this as a couple of simple shifts. if (KnownOne.intersects(HighBitMask)) { // Mask out the high bit, which we know is set. Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt, DAG.getConstant(~HighBitMask, ShTy)); switch (N->getOpcode()) { default: llvm_unreachable("Unknown shift"); case ISD::SHL: Lo = DAG.getConstant(0, NVT); // Low part is zero. Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part. return true; case ISD::SRL: Hi = DAG.getConstant(0, NVT); // Hi part is zero. Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part. return true; case ISD::SRA: Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part. DAG.getConstant(NVTBits-1, ShTy)); Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part. return true; } } // If we know that all of the high bits of the shift amount are zero, then we // can do this as a couple of simple shifts. if ((KnownZero & HighBitMask) == HighBitMask) { // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined // shift if x is zero. We can use XOR here because x is known to be smaller // than 32. SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt, DAG.getConstant(NVTBits-1, ShTy)); unsigned Op1, Op2; switch (N->getOpcode()) { default: llvm_unreachable("Unknown shift"); case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break; case ISD::SRL: case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break; } // When shifting right the arithmetic for Lo and Hi is swapped. if (N->getOpcode() != ISD::SHL) std::swap(InL, InH); // Use a little trick to get the bits that move from Lo to Hi. First // shift by one bit. SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, ShTy)); // Then compute the remaining shift with amount-1. SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2); Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt); Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2); if (N->getOpcode() != ISD::SHL) std::swap(Hi, Lo); return true; } return false; } /// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift /// of any size. bool DAGTypeLegalizer:: ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Amt = N->getOperand(1); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); EVT ShTy = Amt.getValueType(); unsigned NVTBits = NVT.getSizeInBits(); assert(isPowerOf2_32(NVTBits) && "Expanded integer type size not a power of two!"); SDLoc dl(N); // Get the incoming operand to be shifted. SDValue InL, InH; GetExpandedInteger(N->getOperand(0), InL, InH); SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy); SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode); SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt); SDValue isShort = DAG.getSetCC(dl, getSetCCResultType(ShTy), Amt, NVBitsNode, ISD::SETULT); SDValue LoS, HiS, LoL, HiL; switch (N->getOpcode()) { default: llvm_unreachable("Unknown shift"); case ISD::SHL: // Short: ShAmt < NVTBits LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); HiS = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(ISD::SHL, dl, NVT, InH, Amt), // FIXME: If Amt is zero, the following shift generates an undefined result // on some architectures. DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack)); // Long: ShAmt >= NVTBits LoL = DAG.getConstant(0, NVT); // Lo part is zero. HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part. Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL); Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL); return true; case ISD::SRL: // Short: ShAmt < NVTBits HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); LoS = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), // FIXME: If Amt is zero, the following shift generates an undefined result // on some architectures. DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack)); // Long: ShAmt >= NVTBits HiL = DAG.getConstant(0, NVT); // Hi part is zero. LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part. Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL); Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL); return true; case ISD::SRA: // Short: ShAmt < NVTBits HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); LoS = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), // FIXME: If Amt is zero, the following shift generates an undefined result // on some architectures. DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack)); // Long: ShAmt >= NVTBits HiL = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign of Hi part. DAG.getConstant(NVTBits-1, ShTy)); LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part. Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL); Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL); return true; } } void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; GetExpandedInteger(N->getOperand(0), LHSL, LHSH); GetExpandedInteger(N->getOperand(1), RHSL, RHSH); EVT NVT = LHSL.getValueType(); SDValue LoOps[2] = { LHSL, RHSL }; SDValue HiOps[3] = { LHSH, RHSH }; // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support // them. TODO: Teach operation legalization how to expand unsupported // ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate // a carry of type MVT::Glue, but there doesn't seem to be any way to // generate a value of this type in the expanded code sequence. bool hasCarry = TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC, TLI.getTypeToExpandTo(*DAG.getContext(), NVT)); if (hasCarry) { SDVTList VTList = DAG.getVTList(NVT, MVT::Glue); if (N->getOpcode() == ISD::ADD) { Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); } return; } if (N->getOpcode() == ISD::ADD) { Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2); Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2); SDValue Cmp1 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[0], ISD::SETULT); SDValue Carry1 = DAG.getSelect(dl, NVT, Cmp1, DAG.getConstant(1, NVT), DAG.getConstant(0, NVT)); SDValue Cmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[1], ISD::SETULT); SDValue Carry2 = DAG.getSelect(dl, NVT, Cmp2, DAG.getConstant(1, NVT), Carry1); Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2); } else { Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2); Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2); SDValue Cmp = DAG.getSetCC(dl, getSetCCResultType(LoOps[0].getValueType()), LoOps[0], LoOps[1], ISD::SETULT); SDValue Borrow = DAG.getSelect(dl, NVT, Cmp, DAG.getConstant(1, NVT), DAG.getConstant(0, NVT)); Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow); } } void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N, SDValue &Lo, SDValue &Hi) { // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; SDLoc dl(N); GetExpandedInteger(N->getOperand(0), LHSL, LHSH); GetExpandedInteger(N->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue); SDValue LoOps[2] = { LHSL, RHSL }; SDValue HiOps[3] = { LHSH, RHSH }; if (N->getOpcode() == ISD::ADDC) { Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); } // Legalized the flag result - switch anything that used the old flag to // use the new one. ReplaceValueWith(SDValue(N, 1), Hi.getValue(1)); } void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N, SDValue &Lo, SDValue &Hi) { // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; SDLoc dl(N); GetExpandedInteger(N->getOperand(0), LHSL, LHSH); GetExpandedInteger(N->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue); SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) }; SDValue HiOps[3] = { LHSH, RHSH }; Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3); // Legalized the flag result - switch anything that used the old flag to // use the new one. ReplaceValueWith(SDValue(N, 1), Hi.getValue(1)); } void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi) { SDValue Res = DisintegrateMERGE_VALUES(N, ResNo); SplitInteger(Res, Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); SDValue Op = N->getOperand(0); if (Op.getValueType().bitsLE(NVT)) { // The low part is any extension of the input (which degenerates to a copy). Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op); Hi = DAG.getUNDEF(NVT); // The high part is undefined. } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteInteger && "Only know how to promote this result!"); SDValue Res = GetPromotedInteger(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); } } void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); GetExpandedInteger(N->getOperand(0), Lo, Hi); EVT NVT = Lo.getValueType(); EVT EVT = cast(N->getOperand(1))->getVT(); unsigned NVTBits = NVT.getSizeInBits(); unsigned EVTBits = EVT.getSizeInBits(); if (NVTBits < EVTBits) { Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi, DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), EVTBits - NVTBits))); } else { Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT)); // The high part replicates the sign bit of Lo, make it explicit. Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, DAG.getConstant(NVTBits-1, TLI.getPointerTy())); } } void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); GetExpandedInteger(N->getOperand(0), Lo, Hi); EVT NVT = Lo.getValueType(); EVT EVT = cast(N->getOperand(1))->getVT(); unsigned NVTBits = NVT.getSizeInBits(); unsigned EVTBits = EVT.getSizeInBits(); if (NVTBits < EVTBits) { Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi, DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), EVTBits - NVTBits))); } else { Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT)); // The high part must be zero, make it explicit. Hi = DAG.getConstant(0, NVT); } } void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands. Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo); Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi); } void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); unsigned NBitWidth = NVT.getSizeInBits(); const APInt &Cst = cast(N)->getAPIntValue(); Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT); Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT); } void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32) GetExpandedInteger(N->getOperand(0), Lo, Hi); EVT NVT = Lo.getValueType(); SDValue HiNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Hi, DAG.getConstant(0, NVT), ISD::SETNE); SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo); SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi); Lo = DAG.getSelect(dl, NVT, HiNotZero, HiLZ, DAG.getNode(ISD::ADD, dl, NVT, LoLZ, DAG.getConstant(NVT.getSizeInBits(), NVT))); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo) GetExpandedInteger(N->getOperand(0), Lo, Hi); EVT NVT = Lo.getValueType(); Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo), DAG.getNode(ISD::CTPOP, dl, NVT, Hi)); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32) GetExpandedInteger(N->getOperand(0), Lo, Hi); EVT NVT = Lo.getValueType(); SDValue LoNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, DAG.getConstant(0, NVT), ISD::SETNE); SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo); SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi); Lo = DAG.getSelect(dl, NVT, LoNotZero, LoLZ, DAG.getNode(ISD::ADD, dl, NVT, HiLZ, DAG.getConstant(NVT.getSizeInBits(), NVT))); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); EVT VT = N->getValueType(0); SDValue Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!"); SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, true/*irrelevant*/, dl).first, Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); EVT VT = N->getValueType(0); SDValue Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, false/*irrelevant*/, dl).first, Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi) { if (ISD::isNormalLoad(N)) { ExpandRes_NormalLoad(N, Lo, Hi); return; } assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue Ch = N->getChain(); SDValue Ptr = N->getBasePtr(); ISD::LoadExtType ExtType = N->getExtensionType(); unsigned Alignment = N->getAlignment(); bool isVolatile = N->isVolatile(); bool isNonTemporal = N->isNonTemporal(); bool isInvariant = N->isInvariant(); const MDNode *TBAAInfo = N->getTBAAInfo(); SDLoc dl(N); assert(NVT.isByteSized() && "Expanded type not byte sized!"); if (N->getMemoryVT().bitsLE(NVT)) { EVT MemVT = N->getMemoryVT(); Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(), MemVT, isVolatile, isNonTemporal, Alignment, TBAAInfo); // Remember the chain. Ch = Lo.getValue(1); if (ExtType == ISD::SEXTLOAD) { // The high part is obtained by SRA'ing all but one of the bits of the // lo part. unsigned LoSize = Lo.getValueType().getSizeInBits(); Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getPointerTy())); } else if (ExtType == ISD::ZEXTLOAD) { // The high part is just a zero. Hi = DAG.getConstant(0, NVT); } else { assert(ExtType == ISD::EXTLOAD && "Unknown extload!"); // The high part is undefined. Hi = DAG.getUNDEF(NVT); } } else if (TLI.isLittleEndian()) { // Little-endian - low bits are at low addresses. Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(), isVolatile, isNonTemporal, isInvariant, Alignment, TBAAInfo); unsigned ExcessBits = N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits); // Increment the pointer to the other half. unsigned IncrementSize = NVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo().getWithOffset(IncrementSize), NEVT, isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize), TBAAInfo); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); } else { // Big-endian - high bits are at low addresses. Favor aligned loads at // the cost of some bit-fiddling. EVT MemVT = N->getMemoryVT(); unsigned EBytes = MemVT.getStoreSize(); unsigned IncrementSize = NVT.getSizeInBits()/8; unsigned ExcessBits = (EBytes - IncrementSize)*8; // Load both the high bits and maybe some of the low bits. Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(), EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits() - ExcessBits), isVolatile, isNonTemporal, Alignment, TBAAInfo); // Increment the pointer to the other half. Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); // Load the rest of the low bits. Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr, N->getPointerInfo().getWithOffset(IncrementSize), EVT::getIntegerVT(*DAG.getContext(), ExcessBits), isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize), TBAAInfo); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); if (ExcessBits < NVT.getSizeInBits()) { // Transfer low bits from the bottom of Hi to the top of Lo. Lo = DAG.getNode(ISD::OR, dl, NVT, Lo, DAG.getNode(ISD::SHL, dl, NVT, Hi, DAG.getConstant(ExcessBits, TLI.getPointerTy()))); // Move high bits to the right position in Hi. Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl, NVT, Hi, DAG.getConstant(NVT.getSizeInBits() - ExcessBits, TLI.getPointerTy())); } } // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Ch); } void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); SDValue LL, LH, RL, RH; GetExpandedInteger(N->getOperand(0), LL, LH); GetExpandedInteger(N->getOperand(1), RL, RH); Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL); Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH); } void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT VT = N->getValueType(0); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDLoc dl(N); bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT); bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT); bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT); bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT); if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { SDValue LL, LH, RL, RH; GetExpandedInteger(N->getOperand(0), LL, LH); GetExpandedInteger(N->getOperand(1), RL, RH); unsigned OuterBitSize = VT.getSizeInBits(); unsigned InnerBitSize = NVT.getSizeInBits(); unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { // The inputs are both zero-extended. if (HasUMUL_LOHI) { // We can emit a umul_lohi. Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); Hi = SDValue(Lo.getNode(), 1); return; } if (HasMULHU) { // We can emit a mulhu+mul. Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); return; } } if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { // The input values are both sign-extended. if (HasSMUL_LOHI) { // We can emit a smul_lohi. Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); Hi = SDValue(Lo.getNode(), 1); return; } if (HasMULHS) { // We can emit a mulhs+mul. Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL); return; } } if (HasUMUL_LOHI) { // Lo,Hi = umul LHS, RHS. SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); Lo = UMulLOHI; Hi = UMulLOHI.getValue(1); RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); return; } if (HasMULHU) { Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); return; } } // If nothing else, we can make a libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i16) LC = RTLIB::MUL_I16; else if (VT == MVT::i32) LC = RTLIB::MUL_I32; else if (VT == MVT::i64) LC = RTLIB::MUL_I64; else if (VT == MVT::i128) LC = RTLIB::MUL_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true/*irrelevant*/, dl).first, Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node, SDValue &Lo, SDValue &Hi) { SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDLoc dl(Node); // Expand the result by simply replacing it with the equivalent // non-overflow-checking operation. SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB, dl, LHS.getValueType(), LHS, RHS); SplitInteger(Sum, Lo, Hi); // Compute the overflow. // // LHSSign -> LHS >= 0 // RHSSign -> RHS >= 0 // SumSign -> Sum >= 0 // // Add: // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) // Sub: // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) // EVT OType = Node->getValueType(1); SDValue Zero = DAG.getConstant(0, LHS.getValueType()); SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, Node->getOpcode() == ISD::SADDO ? ISD::SETEQ : ISD::SETNE); SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); // Use the calculated overflow everywhere. ReplaceValueWith(SDValue(Node, 1), Cmp); } void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT VT = N->getValueType(0); SDLoc dl(N); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i16) LC = RTLIB::SDIV_I16; else if (VT == MVT::i32) LC = RTLIB::SDIV_I32; else if (VT == MVT::i64) LC = RTLIB::SDIV_I64; else if (VT == MVT::i128) LC = RTLIB::SDIV_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl).first, Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT VT = N->getValueType(0); SDLoc dl(N); // If we can emit an efficient shift operation, do so now. Check to see if // the RHS is a constant. if (ConstantSDNode *CN = dyn_cast(N->getOperand(1))) return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi); // If we can determine that the high bit of the shift is zero or one, even if // the low bits are variable, emit this shift in an optimized form. if (ExpandShiftWithKnownAmountBit(N, Lo, Hi)) return; // If this target supports shift_PARTS, use it. First, map to the _PARTS opc. unsigned PartsOpc; if (N->getOpcode() == ISD::SHL) { PartsOpc = ISD::SHL_PARTS; } else if (N->getOpcode() == ISD::SRL) { PartsOpc = ISD::SRL_PARTS; } else { assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); PartsOpc = ISD::SRA_PARTS; } // Next check to see if the target supports this SHL_PARTS operation or if it // will custom expand it. EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT); if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || Action == TargetLowering::Custom) { // Expand the subcomponents. SDValue LHSL, LHSH; GetExpandedInteger(N->getOperand(0), LHSL, LHSH); EVT VT = LHSL.getValueType(); // If the shift amount operand is coming from a vector legalization it may // have an illegal type. Fix that first by casting the operand, otherwise // the new SHL_PARTS operation would need further legalization. SDValue ShiftOp = N->getOperand(1); EVT ShiftTy = TLI.getShiftAmountTy(VT); assert(ShiftTy.getScalarType().getSizeInBits() >= Log2_32_Ceil(VT.getScalarType().getSizeInBits()) && "ShiftAmountTy is too small to cover the range of this type!"); if (ShiftOp.getValueType() != ShiftTy) ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy); SDValue Ops[] = { LHSL, LHSH, ShiftOp }; Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3); Hi = Lo.getValue(1); return; } // Otherwise, emit a libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; bool isSigned; if (N->getOpcode() == ISD::SHL) { isSigned = false; /*sign irrelevant*/ if (VT == MVT::i16) LC = RTLIB::SHL_I16; else if (VT == MVT::i32) LC = RTLIB::SHL_I32; else if (VT == MVT::i64) LC = RTLIB::SHL_I64; else if (VT == MVT::i128) LC = RTLIB::SHL_I128; } else if (N->getOpcode() == ISD::SRL) { isSigned = false; if (VT == MVT::i16) LC = RTLIB::SRL_I16; else if (VT == MVT::i32) LC = RTLIB::SRL_I32; else if (VT == MVT::i64) LC = RTLIB::SRL_I64; else if (VT == MVT::i128) LC = RTLIB::SRL_I128; } else { assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); isSigned = true; if (VT == MVT::i16) LC = RTLIB::SRA_I16; else if (VT == MVT::i32) LC = RTLIB::SRA_I32; else if (VT == MVT::i64) LC = RTLIB::SRA_I64; else if (VT == MVT::i128) LC = RTLIB::SRA_I128; } if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) { SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, isSigned, dl).first, Lo, Hi); return; } if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi)) llvm_unreachable("Unsupported shift!"); } void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); SDValue Op = N->getOperand(0); if (Op.getValueType().bitsLE(NVT)) { // The low part is sign extension of the input (degenerates to a copy). Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0)); // The high part is obtained by SRA'ing all but one of the bits of low part. unsigned LoSize = NVT.getSizeInBits(); Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getPointerTy())); } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteInteger && "Only know how to promote this result!"); SDValue Res = GetPromotedInteger(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); unsigned ExcessBits = Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi, DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), ExcessBits))); } } void DAGTypeLegalizer:: ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); GetExpandedInteger(N->getOperand(0), Lo, Hi); EVT EVT = cast(N->getOperand(1))->getVT(); if (EVT.bitsLE(Lo.getValueType())) { // sext_inreg the low part if needed. Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo, N->getOperand(1)); // The high part gets the sign extension from the lo-part. This handles // things like sextinreg V:i64 from i8. Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo, DAG.getConstant(Hi.getValueType().getSizeInBits()-1, TLI.getPointerTy())); } else { // For example, extension of an i48 to an i64. Leave the low part alone, // sext_inreg the high part. unsigned ExcessBits = EVT.getSizeInBits() - Lo.getValueType().getSizeInBits(); Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi, DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), ExcessBits))); } } void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT VT = N->getValueType(0); SDLoc dl(N); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i16) LC = RTLIB::SREM_I16; else if (VT == MVT::i32) LC = RTLIB::SREM_I32; else if (VT == MVT::i64) LC = RTLIB::SREM_I64; else if (VT == MVT::i128) LC = RTLIB::SREM_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl).first, Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0)); Hi = DAG.getNode(ISD::SRL, dl, N->getOperand(0).getValueType(), N->getOperand(0), DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy())); Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi); } void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDLoc dl(N); // Expand the result by simply replacing it with the equivalent // non-overflow-checking operation. SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB, dl, LHS.getValueType(), LHS, RHS); SplitInteger(Sum, Lo, Hi); // Calculate the overflow: addition overflows iff a + b < a, and subtraction // overflows iff a - b > a. SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS, N->getOpcode () == ISD::UADDO ? ISD::SETULT : ISD::SETUGT); // Use the calculated overflow everywhere. ReplaceValueWith(SDValue(N, 1), Ofl); } void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT VT = N->getValueType(0); SDLoc dl(N); // A divide for UMULO should be faster than a function call. if (N->getOpcode() == ISD::UMULO) { SDValue LHS = N->getOperand(0), RHS = N->getOperand(1); SDValue MUL = DAG.getNode(ISD::MUL, dl, LHS.getValueType(), LHS, RHS); SplitInteger(MUL, Lo, Hi); // A divide for UMULO will be faster than a function call. Select to // make sure we aren't using 0. SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(VT), RHS, DAG.getConstant(0, VT), ISD::SETEQ); SDValue NotZero = DAG.getSelect(dl, VT, isZero, DAG.getConstant(1, VT), RHS); SDValue DIV = DAG.getNode(ISD::UDIV, dl, VT, MUL, NotZero); SDValue Overflow = DAG.getSetCC(dl, N->getValueType(1), DIV, LHS, ISD::SETNE); Overflow = DAG.getSelect(dl, N->getValueType(1), isZero, DAG.getConstant(0, N->getValueType(1)), Overflow); ReplaceValueWith(SDValue(N, 1), Overflow); return; } Type *RetTy = VT.getTypeForEVT(*DAG.getContext()); EVT PtrVT = TLI.getPointerTy(); Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext()); // Replace this with a libcall that will check overflow. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i32) LC = RTLIB::MULO_I32; else if (VT == MVT::i64) LC = RTLIB::MULO_I64; else if (VT == MVT::i128) LC = RTLIB::MULO_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!"); SDValue Temp = DAG.CreateStackTemporary(PtrVT); // Temporary for the overflow value, default it to zero. SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, DAG.getConstant(0, PtrVT), Temp, MachinePointerInfo(), false, false, 0); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { EVT ArgVT = N->getOperand(i).getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = N->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = true; Entry.isZExt = false; Args.push_back(Entry); } // Also pass the address of the overflow check. Entry.Node = Temp; Entry.Ty = PtrTy->getPointerTo(); Entry.isSExt = true; Entry.isZExt = false; Args.push_back(Entry); SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT); TargetLowering:: CallLoweringInfo CLI(Chain, RetTy, true, false, false, false, 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, Func, Args, DAG, dl); std::pair CallInfo = TLI.LowerCallTo(CLI); SplitInteger(CallInfo.first, Lo, Hi); SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp, MachinePointerInfo(), false, false, false, 0); SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2, DAG.getConstant(0, PtrVT), ISD::SETNE); // Use the overflow from the libcall everywhere. ReplaceValueWith(SDValue(N, 1), Ofl); } void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT VT = N->getValueType(0); SDLoc dl(N); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i16) LC = RTLIB::UDIV_I16; else if (VT == MVT::i32) LC = RTLIB::UDIV_I32; else if (VT == MVT::i64) LC = RTLIB::UDIV_I64; else if (VT == MVT::i128) LC = RTLIB::UDIV_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl).first, Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT VT = N->getValueType(0); SDLoc dl(N); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i16) LC = RTLIB::UREM_I16; else if (VT == MVT::i32) LC = RTLIB::UREM_I32; else if (VT == MVT::i64) LC = RTLIB::UREM_I64; else if (VT == MVT::i128) LC = RTLIB::UREM_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl).first, Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N, SDValue &Lo, SDValue &Hi) { EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); SDLoc dl(N); SDValue Op = N->getOperand(0); if (Op.getValueType().bitsLE(NVT)) { // The low part is zero extension of the input (degenerates to a copy). Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0)); Hi = DAG.getConstant(0, NVT); // The high part is just a zero. } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteInteger && "Only know how to promote this result!"); SDValue Res = GetPromotedInteger(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); unsigned ExcessBits = Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); Hi = DAG.getZeroExtendInReg(Hi, dl, EVT::getIntegerVT(*DAG.getContext(), ExcessBits)); } } void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N, SDValue &Lo, SDValue &Hi) { SDLoc dl(N); EVT VT = cast(N)->getMemoryVT(); SDValue Zero = DAG.getConstant(0, VT); SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT, N->getOperand(0), N->getOperand(1), Zero, Zero, cast(N)->getMemOperand(), cast(N)->getOrdering(), cast(N)->getSynchScope()); ReplaceValueWith(SDValue(N, 0), Swap.getValue(0)); ReplaceValueWith(SDValue(N, 1), Swap.getValue(1)); } //===----------------------------------------------------------------------===// // Integer Operand Expansion //===----------------------------------------------------------------------===// /// ExpandIntegerOperand - This method is called when the specified operand of /// the specified node is found to need expansion. At this point, all of the /// result types of the node are known to be legal, but other operands of the /// node may need promotion or expansion as well as the specified one. bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) { DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n"); SDValue Res = SDValue(); if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) return false; switch (N->getOpcode()) { default: #ifndef NDEBUG dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": "; N->dump(&DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to expand this operator's operand!"); case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break; case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break; case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break; case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break; case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break; case ISD::SCALAR_TO_VECTOR: Res = ExpandOp_SCALAR_TO_VECTOR(N); break; case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break; case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break; case ISD::SINT_TO_FP: Res = ExpandIntOp_SINT_TO_FP(N); break; case ISD::STORE: Res = ExpandIntOp_STORE(cast(N), OpNo); break; case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break; case ISD::UINT_TO_FP: Res = ExpandIntOp_UINT_TO_FP(N); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: Res = ExpandIntOp_Shift(N); break; case ISD::RETURNADDR: case ISD::FRAMEADDR: Res = ExpandIntOp_RETURNADDR(N); break; case ISD::ATOMIC_STORE: Res = ExpandIntOp_ATOMIC_STORE(N); break; } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Tell the legalizer // core about this. if (Res.getNode() == N) return true; assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code /// is shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, SDLoc dl) { SDValue LHSLo, LHSHi, RHSLo, RHSHi; GetExpandedInteger(NewLHS, LHSLo, LHSHi); GetExpandedInteger(NewRHS, RHSLo, RHSHi); if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) { if (RHSLo == RHSHi) { if (ConstantSDNode *RHSCST = dyn_cast(RHSLo)) { if (RHSCST->isAllOnesValue()) { // Equality comparison to -1. NewLHS = DAG.getNode(ISD::AND, dl, LHSLo.getValueType(), LHSLo, LHSHi); NewRHS = RHSLo; return; } } } NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo); NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi); NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS); NewRHS = DAG.getConstant(0, NewLHS.getValueType()); return; } // If this is a comparison of the sign bit, just look at the top part. // X > -1, x < 0 if (ConstantSDNode *CST = dyn_cast(NewRHS)) if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0 (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1 NewLHS = LHSHi; NewRHS = RHSHi; return; } // FIXME: This generated code sucks. ISD::CondCode LowCC; switch (CCCode) { default: llvm_unreachable("Unknown integer setcc!"); case ISD::SETLT: case ISD::SETULT: LowCC = ISD::SETULT; break; case ISD::SETGT: case ISD::SETUGT: LowCC = ISD::SETUGT; break; case ISD::SETLE: case ISD::SETULE: LowCC = ISD::SETULE; break; case ISD::SETGE: case ISD::SETUGE: LowCC = ISD::SETUGE; break; } // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; // NOTE: on targets without efficient SELECT of bools, we can always use // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true, NULL); SDValue Tmp1, Tmp2; Tmp1 = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()), LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl); if (!Tmp1.getNode()) Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()), LHSLo, RHSLo, LowCC); Tmp2 = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl); if (!Tmp2.getNode()) Tmp2 = DAG.getNode(ISD::SETCC, dl, getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, DAG.getCondCode(CCCode)); ConstantSDNode *Tmp1C = dyn_cast(Tmp1.getNode()); ConstantSDNode *Tmp2C = dyn_cast(Tmp2.getNode()); if ((Tmp1C && Tmp1C->isNullValue()) || (Tmp2C && Tmp2C->isNullValue() && (CCCode == ISD::SETLE || CCCode == ISD::SETGE || CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || (Tmp2C && Tmp2C->getAPIntValue() == 1 && (CCCode == ISD::SETLT || CCCode == ISD::SETGT || CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { // low part is known false, returns high part. // For LE / GE, if high part is known false, ignore the low part. // For LT / GT, if high part is known true, ignore the low part. NewLHS = Tmp2; NewRHS = SDValue(); return; } NewLHS = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETEQ, false, DagCombineInfo, dl); if (!NewLHS.getNode()) NewLHS = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETEQ); NewLHS = DAG.getSelect(dl, Tmp1.getValueType(), NewLHS, Tmp1, Tmp2); NewRHS = SDValue(); } SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) { SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N)); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.getNode() == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)), 0); } SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(4))->get(); IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N)); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.getNode() == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, N->getOperand(2), N->getOperand(3), DAG.getCondCode(CCCode)), 0); } SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N)); // If ExpandSetCCOperands returned a scalar, use it. if (NewRHS.getNode() == 0) { assert(NewLHS.getValueType() == N->getValueType(0) && "Unexpected setcc expansion!"); return NewLHS; } // Otherwise, update N to have the operands specified. return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, DAG.getCondCode(CCCode)), 0); } SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) { // The value being shifted is legal, but the shift amount is too big. // It follows that either the result of the shift is undefined, or the // upper half of the shift amount is zero. Just use the lower half. SDValue Lo, Hi; GetExpandedInteger(N->getOperand(1), Lo, Hi); return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0); } SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) { // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant. This // surely makes pretty nice problems on 8/16 bit targets. Just truncate this // constant to valid type. SDValue Lo, Hi; GetExpandedInteger(N->getOperand(0), Lo, Hi); return SDValue(DAG.UpdateNodeOperands(N, Lo), 0); } SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) { SDValue Op = N->getOperand(0); EVT DstVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Don't know how to expand this SINT_TO_FP!"); return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, SDLoc(N)).first; } SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) { if (ISD::isNormalStore(N)) return ExpandOp_NormalStore(N, OpNo); assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); assert(OpNo == 1 && "Can only expand the stored value so far"); EVT VT = N->getOperand(1).getValueType(); EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue Ch = N->getChain(); SDValue Ptr = N->getBasePtr(); unsigned Alignment = N->getAlignment(); bool isVolatile = N->isVolatile(); bool isNonTemporal = N->isNonTemporal(); const MDNode *TBAAInfo = N->getTBAAInfo(); SDLoc dl(N); SDValue Lo, Hi; assert(NVT.isByteSized() && "Expanded type not byte sized!"); if (N->getMemoryVT().bitsLE(NVT)) { GetExpandedInteger(N->getValue(), Lo, Hi); return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(), N->getMemoryVT(), isVolatile, isNonTemporal, Alignment, TBAAInfo); } if (TLI.isLittleEndian()) { // Little-endian - low bits are at low addresses. GetExpandedInteger(N->getValue(), Lo, Hi); Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(), isVolatile, isNonTemporal, Alignment, TBAAInfo); unsigned ExcessBits = N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits); // Increment the pointer to the other half. unsigned IncrementSize = NVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo().getWithOffset(IncrementSize), NEVT, isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize), TBAAInfo); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); } // Big-endian - high bits are at low addresses. Favor aligned stores at // the cost of some bit-fiddling. GetExpandedInteger(N->getValue(), Lo, Hi); EVT ExtVT = N->getMemoryVT(); unsigned EBytes = ExtVT.getStoreSize(); unsigned IncrementSize = NVT.getSizeInBits()/8; unsigned ExcessBits = (EBytes - IncrementSize)*8; EVT HiVT = EVT::getIntegerVT(*DAG.getContext(), ExtVT.getSizeInBits() - ExcessBits); if (ExcessBits < NVT.getSizeInBits()) { // Transfer high bits from the top of Lo to the bottom of Hi. Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi, DAG.getConstant(NVT.getSizeInBits() - ExcessBits, TLI.getPointerTy())); Hi = DAG.getNode(ISD::OR, dl, NVT, Hi, DAG.getNode(ISD::SRL, dl, NVT, Lo, DAG.getConstant(ExcessBits, TLI.getPointerTy()))); } // Store both the high bits and maybe some of the low bits. Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(), HiVT, isVolatile, isNonTemporal, Alignment, TBAAInfo); // Increment the pointer to the other half. Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); // Store the lowest ExcessBits bits in the second half. Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo().getWithOffset(IncrementSize), EVT::getIntegerVT(*DAG.getContext(), ExcessBits), isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize), TBAAInfo); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); } SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) { SDValue InL, InH; GetExpandedInteger(N->getOperand(0), InL, InH); // Just truncate the low part of the source. return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), InL); } SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) { SDValue Op = N->getOperand(0); EVT SrcVT = Op.getValueType(); EVT DstVT = N->getValueType(0); SDLoc dl(N); // The following optimization is valid only if every value in SrcVT (when // treated as signed) is representable in DstVT. Check that the mantissa // size of DstVT is >= than the number of bits in SrcVT -1. const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT); if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 && TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){ // Do a signed conversion then adjust the result. SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op); SignedConv = TLI.LowerOperation(SignedConv, DAG); // The result of the signed conversion needs adjusting if the 'sign bit' of // the incoming integer was set. To handle this, we dynamically test to see // if it is set, and, if so, add a fudge factor. const uint64_t F32TwoE32 = 0x4F800000ULL; const uint64_t F32TwoE64 = 0x5F800000ULL; const uint64_t F32TwoE128 = 0x7F800000ULL; APInt FF(32, 0); if (SrcVT == MVT::i32) FF = APInt(32, F32TwoE32); else if (SrcVT == MVT::i64) FF = APInt(32, F32TwoE64); else if (SrcVT == MVT::i128) FF = APInt(32, F32TwoE128); else llvm_unreachable("Unsupported UINT_TO_FP!"); // Check whether the sign bit is set. SDValue Lo, Hi; GetExpandedInteger(Op, Lo, Hi); SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Hi.getValueType()), Hi, DAG.getConstant(0, Hi.getValueType()), ISD::SETLT); // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. SDValue FudgePtr = DAG.getConstantPool( ConstantInt::get(*DAG.getContext(), FF.zext(64)), TLI.getPointerTy()); // Get a pointer to FF if the sign bit was set, or to 0 otherwise. SDValue Zero = DAG.getIntPtrConstant(0); SDValue Four = DAG.getIntPtrConstant(4); if (TLI.isBigEndian()) std::swap(Zero, Four); SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Zero, Four); unsigned Alignment = cast(FudgePtr)->getAlignment(); FudgePtr = DAG.getNode(ISD::ADD, dl, FudgePtr.getValueType(), FudgePtr, Offset); Alignment = std::min(Alignment, 4u); // Load the value out, extending it from f32 to the destination float type. // FIXME: Avoid the extend by constructing the right constant pool? SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(), FudgePtr, MachinePointerInfo::getConstantPool(), MVT::f32, false, false, Alignment); return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge); } // Otherwise, use a libcall. RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Don't know how to expand this UINT_TO_FP!"); return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, dl).first; } SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) { SDLoc dl(N); SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, cast(N)->getMemoryVT(), N->getOperand(0), N->getOperand(1), N->getOperand(2), cast(N)->getMemOperand(), cast(N)->getOrdering(), cast(N)->getSynchScope()); return Swap.getValue(1); } SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) { SDValue InOp0 = N->getOperand(0); EVT InVT = InOp0.getValueType(); EVT OutVT = N->getValueType(0); EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); assert(NOutVT.isVector() && "This type must be promoted to a vector type"); unsigned OutNumElems = OutVT.getVectorNumElements(); EVT NOutVTElem = NOutVT.getVectorElementType(); SDLoc dl(N); SDValue BaseIdx = N->getOperand(1); SmallVector Ops; Ops.reserve(OutNumElems); for (unsigned i = 0; i != OutNumElems; ++i) { // Extract the element from the original vector. SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(), BaseIdx, DAG.getConstant(i, BaseIdx.getValueType())); SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InVT.getVectorElementType(), N->getOperand(0), Index); SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext); // Insert the converted element to the new vector. Ops.push_back(Op); } return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size()); } SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) { ShuffleVectorSDNode *SV = cast(N); EVT VT = N->getValueType(0); SDLoc dl(N); unsigned NumElts = VT.getVectorNumElements(); SmallVector NewMask; for (unsigned i = 0; i != NumElts; ++i) { NewMask.push_back(SV->getMaskElt(i)); } SDValue V0 = GetPromotedInteger(N->getOperand(0)); SDValue V1 = GetPromotedInteger(N->getOperand(1)); EVT OutVT = V0.getValueType(); return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]); } SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) { EVT OutVT = N->getValueType(0); EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); assert(NOutVT.isVector() && "This type must be promoted to a vector type"); unsigned NumElems = N->getNumOperands(); EVT NOutVTElem = NOutVT.getVectorElementType(); SDLoc dl(N); SmallVector Ops; Ops.reserve(NumElems); for (unsigned i = 0; i != NumElems; ++i) { SDValue Op; // BUILD_VECTOR integer operand types are allowed to be larger than the // result's element type. This may still be true after the promotion. For // example, we might be promoting ( = BV , , ...) to // (v?i16 = BV , , ...), and we can't any_extend to . if (N->getOperand(i).getValueType().bitsLT(NOutVTElem)) Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i)); else Op = N->getOperand(i); Ops.push_back(Op); } return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size()); } SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) { SDLoc dl(N); assert(!N->getOperand(0).getValueType().isVector() && "Input must be a scalar"); EVT OutVT = N->getValueType(0); EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); assert(NOutVT.isVector() && "This type must be promoted to a vector type"); EVT NOutVTElem = NOutVT.getVectorElementType(); SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0)); return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op); } SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) { SDLoc dl(N); EVT OutVT = N->getValueType(0); EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); assert(NOutVT.isVector() && "This type must be promoted to a vector type"); EVT InElemTy = OutVT.getVectorElementType(); EVT OutElemTy = NOutVT.getVectorElementType(); unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements(); unsigned NumOutElem = NOutVT.getVectorNumElements(); unsigned NumOperands = N->getNumOperands(); assert(NumElem * NumOperands == NumOutElem && "Unexpected number of elements"); // Take the elements from the first vector. SmallVector Ops(NumOutElem); for (unsigned i = 0; i < NumOperands; ++i) { SDValue Op = N->getOperand(i); for (unsigned j = 0; j < NumElem; ++j) { SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InElemTy, Op, DAG.getConstant(j, TLI.getVectorIdxTy())); Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext); } } return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size()); } SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) { EVT OutVT = N->getValueType(0); EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); assert(NOutVT.isVector() && "This type must be promoted to a vector type"); EVT NOutVTElem = NOutVT.getVectorElementType(); SDLoc dl(N); SDValue V0 = GetPromotedInteger(N->getOperand(0)); SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(1)); return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT, V0, ConvElem, N->getOperand(2)); } SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) { SDLoc dl(N); SDValue V0 = GetPromotedInteger(N->getOperand(0)); SDValue V1 = DAG.getZExtOrTrunc(N->getOperand(1), dl, TLI.getVectorIdxTy()); SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, V0->getValueType(0).getScalarType(), V0, V1); // EXTRACT_VECTOR_ELT can return types which are wider than the incoming // element types. If this is the case then we need to expand the outgoing // value and not truncate it. return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0)); } SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) { SDLoc dl(N); unsigned NumElems = N->getNumOperands(); EVT RetSclrTy = N->getValueType(0).getVectorElementType(); SmallVector NewOps; NewOps.reserve(NumElems); // For each incoming vector for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) { SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx)); EVT SclrTy = Incoming->getValueType(0).getVectorElementType(); unsigned NumElem = Incoming->getValueType(0).getVectorNumElements(); for (unsigned i=0; igetValueType(0), &NewOps[0], NewOps.size()); }