//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements integer type expansion and promotion for LegalizeTypes. // Promotion is the act of changing a computation in an illegal type into a // computation in a larger type. For example, implementing i8 arithmetic in an // i32 register (often needed on powerpc). // Expansion is the act of changing a computation in an illegal type into a // computation in two identical registers of a smaller type. For example, // implementing i64 arithmetic in two i32 registers (often needed on 32-bit // targets). // //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" using namespace llvm; //===----------------------------------------------------------------------===// // Integer Result Promotion //===----------------------------------------------------------------------===// /// PromoteIntegerResult - This method is called when a result of a node is /// found to be in need of promotion to a larger type. At this point, the node /// may also have invalid operands or may have other results that need /// expansion, we just know that (at least) one result needs promotion. void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) { DEBUG(cerr << "Promote integer result: "; N->dump(&DAG); cerr << "\n"); SDValue Result = SDValue(); // See if the target wants to custom expand this node. if (TLI.getOperationAction(N->getOpcode(), N->getValueType(ResNo)) == TargetLowering::Custom) { // If the target wants to, allow it to lower this itself. if (SDNode *P = TLI.ReplaceNodeResults(N, DAG)) { // Everything that once used N now uses P. We are guaranteed that the // result value types of N and the result value types of P match. ReplaceNodeWith(N, P); return; } } switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "PromoteIntegerResult #" << ResNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to promote this operator!"); abort(); case ISD::AssertSext: Result = PromoteIntRes_AssertSext(N); break; case ISD::AssertZext: Result = PromoteIntRes_AssertZext(N); break; case ISD::BIT_CONVERT: Result = PromoteIntRes_BIT_CONVERT(N); break; case ISD::BSWAP: Result = PromoteIntRes_BSWAP(N); break; case ISD::BUILD_PAIR: Result = PromoteIntRes_BUILD_PAIR(N); break; case ISD::Constant: Result = PromoteIntRes_Constant(N); break; case ISD::CTLZ: Result = PromoteIntRes_CTLZ(N); break; case ISD::CTPOP: Result = PromoteIntRes_CTPOP(N); break; case ISD::CTTZ: Result = PromoteIntRes_CTTZ(N); break; case ISD::EXTRACT_VECTOR_ELT: Result = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break; case ISD::LOAD: Result = PromoteIntRes_LOAD(cast(N));break; case ISD::SELECT: Result = PromoteIntRes_SELECT(N); break; case ISD::SELECT_CC: Result = PromoteIntRes_SELECT_CC(N); break; case ISD::SETCC: Result = PromoteIntRes_SETCC(N); break; case ISD::SHL: Result = PromoteIntRes_SHL(N); break; case ISD::SIGN_EXTEND_INREG: Result = PromoteIntRes_SIGN_EXTEND_INREG(N); break; case ISD::SRA: Result = PromoteIntRes_SRA(N); break; case ISD::SRL: Result = PromoteIntRes_SRL(N); break; case ISD::TRUNCATE: Result = PromoteIntRes_TRUNCATE(N); break; case ISD::UNDEF: Result = PromoteIntRes_UNDEF(N); break; case ISD::VAARG: Result = PromoteIntRes_VAARG(N); break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Result = PromoteIntRes_INT_EXTEND(N); break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: Result = PromoteIntRes_FP_TO_XINT(N); break; case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADD: case ISD::SUB: case ISD::MUL: Result = PromoteIntRes_SimpleIntBinOp(N); break; case ISD::SDIV: case ISD::SREM: Result = PromoteIntRes_SDIV(N); break; case ISD::UDIV: case ISD::UREM: Result = PromoteIntRes_UDIV(N); break; } // If Result is null, the sub-method took care of registering the result. if (Result.getNode()) SetPromotedInteger(SDValue(N, ResNo), Result); } SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) { // Sign-extend the new bits, and continue the assertion. MVT OldVT = N->getValueType(0); SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::AssertSext, Op.getValueType(), DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(), Op, DAG.getValueType(OldVT)), N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) { // Zero the new bits, and continue the assertion. MVT OldVT = N->getValueType(0); SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::AssertZext, Op.getValueType(), DAG.getZeroExtendInReg(Op, OldVT), N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_BIT_CONVERT(SDNode *N) { SDValue InOp = N->getOperand(0); MVT InVT = InOp.getValueType(); MVT NInVT = TLI.getTypeToTransformTo(InVT); MVT OutVT = TLI.getTypeToTransformTo(N->getValueType(0)); switch (getTypeAction(InVT)) { default: assert(false && "Unknown type action!"); break; case Legal: break; case PromoteInteger: if (OutVT.getSizeInBits() == NInVT.getSizeInBits()) // The input promotes to the same size. Convert the promoted value. return DAG.getNode(ISD::BIT_CONVERT, OutVT, GetPromotedInteger(InOp)); break; case SoftenFloat: // Promote the integer operand by hand. return DAG.getNode(ISD::ANY_EXTEND, OutVT, GetSoftenedFloat(InOp)); case ExpandInteger: case ExpandFloat: break; case ScalarizeVector: // Convert the element to an integer and promote it by hand. return DAG.getNode(ISD::ANY_EXTEND, OutVT, BitConvertToInteger(GetScalarizedVector(InOp))); case SplitVector: // For example, i32 = BIT_CONVERT v2i16 on alpha. Convert the split // pieces of the input into integers and reassemble in the final type. SDValue Lo, Hi; GetSplitVector(N->getOperand(0), Lo, Hi); Lo = BitConvertToInteger(Lo); Hi = BitConvertToInteger(Hi); if (TLI.isBigEndian()) std::swap(Lo, Hi); InOp = DAG.getNode(ISD::ANY_EXTEND, MVT::getIntegerVT(OutVT.getSizeInBits()), JoinIntegers(Lo, Hi)); return DAG.getNode(ISD::BIT_CONVERT, OutVT, InOp); } // Otherwise, lower the bit-convert to a store/load from the stack, then // promote the load. SDValue Op = CreateStackStoreLoad(InOp, N->getValueType(0)); return PromoteIntRes_LOAD(cast(Op.getNode())); } SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); MVT OVT = N->getValueType(0); MVT NVT = Op.getValueType(); unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); return DAG.getNode(ISD::SRL, NVT, DAG.getNode(ISD::BSWAP, NVT, Op), DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); } SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) { // The pair element type may be legal, or may not promote to the same type as // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases. return DAG.getNode(ISD::ANY_EXTEND, TLI.getTypeToTransformTo(N->getValueType(0)), JoinIntegers(N->getOperand(0), N->getOperand(1))); } SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) { MVT VT = N->getValueType(0); // Zero extend things like i1, sign extend everything else. It shouldn't // matter in theory which one we pick, but this tends to give better code? unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; SDValue Result = DAG.getNode(Opc, TLI.getTypeToTransformTo(VT), SDValue(N, 0)); assert(isa(Result) && "Didn't constant fold ext?"); return Result; } SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); MVT OVT = N->getValueType(0); MVT NVT = Op.getValueType(); // Zero extend to the promoted type and do the count there. Op = DAG.getNode(ISD::CTLZ, NVT, DAG.getZeroExtendInReg(Op, OVT)); // Subtract off the extra leading bits in the bigger type. return DAG.getNode(ISD::SUB, NVT, Op, DAG.getConstant(NVT.getSizeInBits() - OVT.getSizeInBits(), NVT)); } SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); MVT OVT = N->getValueType(0); MVT NVT = Op.getValueType(); // Zero extend to the promoted type and do the count there. return DAG.getNode(ISD::CTPOP, NVT, DAG.getZeroExtendInReg(Op, OVT)); } SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); MVT OVT = N->getValueType(0); MVT NVT = Op.getValueType(); // The count is the same in the promoted type except if the original // value was zero. This can be handled by setting the bit just off // the top of the original type. APInt TopBit(NVT.getSizeInBits(), 0); TopBit.set(OVT.getSizeInBits()); Op = DAG.getNode(ISD::OR, NVT, Op, DAG.getConstant(TopBit, NVT)); return DAG.getNode(ISD::CTTZ, NVT, Op); } SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) { MVT OldVT = N->getValueType(0); SDValue OldVec = N->getOperand(0); unsigned OldElts = OldVec.getValueType().getVectorNumElements(); if (OldElts == 1) { assert(!isTypeLegal(OldVec.getValueType()) && "Legal one-element vector of a type needing promotion!"); // It is tempting to follow GetScalarizedVector by a call to // GetPromotedInteger, but this would be wrong because the // scalarized value may not yet have been processed. return DAG.getNode(ISD::ANY_EXTEND, TLI.getTypeToTransformTo(OldVT), GetScalarizedVector(OldVec)); } // Convert to a vector half as long with an element type of twice the width, // for example <4 x i16> -> <2 x i32>. assert(!(OldElts & 1) && "Odd length vectors not supported!"); MVT NewVT = MVT::getIntegerVT(2 * OldVT.getSizeInBits()); assert(OldVT.isSimple() && NewVT.isSimple()); SDValue NewVec = DAG.getNode(ISD::BIT_CONVERT, MVT::getVectorVT(NewVT, OldElts / 2), OldVec); // Extract the element at OldIdx / 2 from the new vector. SDValue OldIdx = N->getOperand(1); SDValue NewIdx = DAG.getNode(ISD::SRL, OldIdx.getValueType(), OldIdx, DAG.getConstant(1, TLI.getShiftAmountTy())); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, NewVec, NewIdx); // Select the appropriate half of the element: Lo if OldIdx was even, // Hi if it was odd. SDValue Lo = Elt; SDValue Hi = DAG.getNode(ISD::SRL, NewVT, Elt, DAG.getConstant(OldVT.getSizeInBits(), TLI.getShiftAmountTy())); if (TLI.isBigEndian()) std::swap(Lo, Hi); SDValue Odd = DAG.getNode(ISD::AND, OldIdx.getValueType(), OldIdx, DAG.getConstant(1, TLI.getShiftAmountTy())); return DAG.getNode(ISD::SELECT, NewVT, Odd, Hi, Lo); } SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) { unsigned NewOpc = N->getOpcode(); MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); // If we're promoting a UINT to a larger size, check to see if the new node // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since // we can use that instead. This allows us to generate better code for // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not // legal, such as PowerPC. if (N->getOpcode() == ISD::FP_TO_UINT) { if (!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)) NewOpc = ISD::FP_TO_SINT; } return DAG.getNode(NewOpc, NVT, N->getOperand(0)); } SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); if (getTypeAction(N->getOperand(0).getValueType()) == PromoteInteger) { SDValue Res = GetPromotedInteger(N->getOperand(0)); assert(Res.getValueType().getSizeInBits() <= NVT.getSizeInBits() && "Extension doesn't make sense!"); // If the result and operand types are the same after promotion, simplify // to an in-register extension. if (NVT == Res.getValueType()) { // The high bits are not guaranteed to be anything. Insert an extend. if (N->getOpcode() == ISD::SIGN_EXTEND) return DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res, DAG.getValueType(N->getOperand(0).getValueType())); if (N->getOpcode() == ISD::ZERO_EXTEND) return DAG.getZeroExtendInReg(Res, N->getOperand(0).getValueType()); assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!"); return Res; } } // Otherwise, just extend the original operand all the way to the larger type. return DAG.getNode(N->getOpcode(), NVT, N->getOperand(0)); } SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) { assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType(); SDValue Res = DAG.getExtLoad(ExtType, NVT, N->getChain(), N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(), N->getMemoryVT(), N->isVolatile(), N->getAlignment()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); return Res; } SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) { // Sign extend the input. SDValue LHS = GetPromotedInteger(N->getOperand(0)); SDValue RHS = GetPromotedInteger(N->getOperand(1)); MVT VT = N->getValueType(0); LHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, LHS.getValueType(), LHS, DAG.getValueType(VT)); RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, RHS.getValueType(), RHS, DAG.getValueType(VT)); return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) { SDValue LHS = GetPromotedInteger(N->getOperand(1)); SDValue RHS = GetPromotedInteger(N->getOperand(2)); return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0),LHS,RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) { SDValue LHS = GetPromotedInteger(N->getOperand(2)); SDValue RHS = GetPromotedInteger(N->getOperand(3)); return DAG.getNode(ISD::SELECT_CC, LHS.getValueType(), N->getOperand(0), N->getOperand(1), LHS, RHS, N->getOperand(4)); } SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) { assert(isTypeLegal(TLI.getSetCCResultType(N->getOperand(0))) && "SetCC type is not legal??"); return DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(N->getOperand(0)), N->getOperand(0), N->getOperand(1), N->getOperand(2)); } SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) { return DAG.getNode(ISD::SHL, TLI.getTypeToTransformTo(N->getValueType(0)), GetPromotedInteger(N->getOperand(0)), N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(), Op, N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) { // The input may have strange things in the top bits of the registers, but // these operations don't care. They may have weird bits going out, but // that too is okay if they are integer operations. SDValue LHS = GetPromotedInteger(N->getOperand(0)); SDValue RHS = GetPromotedInteger(N->getOperand(1)); return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) { // The input value must be properly sign extended. MVT VT = N->getValueType(0); MVT NVT = TLI.getTypeToTransformTo(VT); SDValue Res = GetPromotedInteger(N->getOperand(0)); Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res, DAG.getValueType(VT)); return DAG.getNode(ISD::SRA, NVT, Res, N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) { // The input value must be properly zero extended. MVT VT = N->getValueType(0); MVT NVT = TLI.getTypeToTransformTo(VT); SDValue Res = ZExtPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::SRL, NVT, Res, N->getOperand(1)); } SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) { SDValue Res; switch (getTypeAction(N->getOperand(0).getValueType())) { default: assert(0 && "Unknown type action!"); case Legal: case ExpandInteger: Res = N->getOperand(0); break; case PromoteInteger: Res = GetPromotedInteger(N->getOperand(0)); break; } MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); assert(Res.getValueType().getSizeInBits() >= NVT.getSizeInBits() && "Truncation doesn't make sense!"); if (Res.getValueType() == NVT) return Res; // Truncate to NVT instead of VT return DAG.getNode(ISD::TRUNCATE, NVT, Res); } SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) { // Zero extend the input. SDValue LHS = GetPromotedInteger(N->getOperand(0)); SDValue RHS = GetPromotedInteger(N->getOperand(1)); MVT VT = N->getValueType(0); LHS = DAG.getZeroExtendInReg(LHS, VT); RHS = DAG.getZeroExtendInReg(RHS, VT); return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS); } SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) { return DAG.getNode(ISD::UNDEF, TLI.getTypeToTransformTo(N->getValueType(0))); } SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) { SDValue Chain = N->getOperand(0); // Get the chain. SDValue Ptr = N->getOperand(1); // Get the pointer. MVT VT = N->getValueType(0); const Value *V = cast(N->getOperand(2))->getValue(); SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Chain, Ptr, V, 0); // Increment the arg pointer, VAList, to the next vaarg // FIXME: should the ABI size be used for the increment? Think of // x86 long double (10 bytes long, but aligned on 4 or 8 bytes) or // integers of unusual size (such MVT::i1, which gives an increment // of zero here!). unsigned Increment = VT.getSizeInBits() / 8; SDValue Tmp = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, DAG.getConstant(Increment, TLI.getPointerTy())); // Store the incremented VAList to the pointer. Tmp = DAG.getStore(VAList.getValue(1), Tmp, Ptr, V, 0); // Load the actual argument out of the arg pointer VAList. Tmp = DAG.getExtLoad(ISD::EXTLOAD, TLI.getTypeToTransformTo(VT), Tmp, VAList, NULL, 0, VT); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Tmp.getValue(1)); return Tmp; } //===----------------------------------------------------------------------===// // Integer Operand Promotion //===----------------------------------------------------------------------===// /// PromoteIntegerOperand - This method is called when the specified operand of /// the specified node is found to need promotion. At this point, all of the /// result types of the node are known to be legal, but other operands of the /// node may need promotion or expansion as well as the specified one. bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) { DEBUG(cerr << "Promote integer operand: "; N->dump(&DAG); cerr << "\n"); SDValue Res = SDValue(); if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType()) == TargetLowering::Custom) Res = TLI.LowerOperation(SDValue(N, OpNo), DAG); if (Res.getNode() == 0) { switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "PromoteIntegerOperand Op #" << OpNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to promote this operator's operand!"); abort(); case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break; case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break; case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break; case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break; case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break; case ISD::FP_EXTEND: Res = PromoteIntOp_FP_EXTEND(N); break; case ISD::FP_ROUND: Res = PromoteIntOp_FP_ROUND(N); break; case ISD::INSERT_VECTOR_ELT: Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break; case ISD::MEMBARRIER: Res = PromoteIntOp_MEMBARRIER(N); break; case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break; case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break; case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break; case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break; case ISD::STORE: Res = PromoteIntOp_STORE(cast(N), OpNo); break; case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break; case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: Res = PromoteIntOp_INT_TO_FP(N); break; } } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. if (Res.getNode() == N) { // Mark N as new and remark N and its operands. This allows us to correctly // revisit N if it needs another step of promotion and allows us to visit // any new operands to N. ReanalyzeNode(N); return true; } assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } /// PromoteSetCCOperands - Promote the operands of a comparison. This code is /// shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS, ISD::CondCode CCCode) { MVT VT = NewLHS.getValueType(); // Get the promoted values. NewLHS = GetPromotedInteger(NewLHS); NewRHS = GetPromotedInteger(NewRHS); // Otherwise, we have to insert explicit sign or zero extends. Note // that we could insert sign extends for ALL conditions, but zero extend // is cheaper on many machines (an AND instead of two shifts), so prefer // it. switch (CCCode) { default: assert(0 && "Unknown integer comparison!"); case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGE: case ISD::SETUGT: case ISD::SETULE: case ISD::SETULT: // ALL of these operations will work if we either sign or zero extend // the operands (including the unsigned comparisons!). Zero extend is // usually a simpler/cheaper operation, so prefer it. NewLHS = DAG.getZeroExtendInReg(NewLHS, VT); NewRHS = DAG.getZeroExtendInReg(NewRHS, VT); break; case ISD::SETGE: case ISD::SETGT: case ISD::SETLT: case ISD::SETLE: NewLHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewLHS.getValueType(), NewLHS, DAG.getValueType(VT)); NewRHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewRHS.getValueType(), NewRHS, DAG.getValueType(VT)); break; } } SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op); } SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) { assert(OpNo == 2 && "Don't know how to promote this operand!"); SDValue LHS = N->getOperand(2); SDValue RHS = N->getOperand(3); PromoteSetCCOperands(LHS, RHS, cast(N->getOperand(1))->get()); // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always // legal types. return DAG.UpdateNodeOperands(SDValue(N, 0), N->getOperand(0), N->getOperand(1), LHS, RHS, N->getOperand(4)); } SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) { assert(OpNo == 1 && "only know how to promote condition"); SDValue Cond = GetPromotedInteger(N->getOperand(1)); // Promote condition. // The top bits of the promoted condition are not necessarily zero, ensure // that the value is properly zero extended. unsigned BitWidth = Cond.getValueSizeInBits(); if (!DAG.MaskedValueIsZero(Cond, APInt::getHighBitsSet(BitWidth, BitWidth-1))) Cond = DAG.getZeroExtendInReg(Cond, MVT::i1); // The chain (Op#0) and basic block destination (Op#2) are always legal types. return DAG.UpdateNodeOperands(SDValue(N, 0), N->getOperand(0), Cond, N->getOperand(2)); } SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) { // Since the result type is legal, the operands must promote to it. MVT OVT = N->getOperand(0).getValueType(); SDValue Lo = GetPromotedInteger(N->getOperand(0)); SDValue Hi = GetPromotedInteger(N->getOperand(1)); assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?"); Lo = DAG.getZeroExtendInReg(Lo, OVT); Hi = DAG.getNode(ISD::SHL, N->getValueType(0), Hi, DAG.getConstant(OVT.getSizeInBits(), TLI.getShiftAmountTy())); return DAG.getNode(ISD::OR, N->getValueType(0), Lo, Hi); } SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) { // The vector type is legal but the element type is not. This implies // that the vector is a power-of-two in length and that the element // type does not have a strange size (eg: it is not i1). MVT VecVT = N->getValueType(0); unsigned NumElts = VecVT.getVectorNumElements(); assert(!(NumElts & 1) && "Legal vector of one illegal element?"); // Build a vector of half the length out of elements of twice the bitwidth. // For example <4 x i16> -> <2 x i32>. MVT OldVT = N->getOperand(0).getValueType(); MVT NewVT = MVT::getIntegerVT(2 * OldVT.getSizeInBits()); assert(OldVT.isSimple() && NewVT.isSimple()); std::vector NewElts; NewElts.reserve(NumElts/2); for (unsigned i = 0; i < NumElts; i += 2) { // Combine two successive elements into one promoted element. SDValue Lo = N->getOperand(i); SDValue Hi = N->getOperand(i+1); if (TLI.isBigEndian()) std::swap(Lo, Hi); NewElts.push_back(JoinIntegers(Lo, Hi)); } SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, MVT::getVectorVT(NewVT, NewElts.size()), &NewElts[0], NewElts.size()); // Convert the new vector to the old vector type. return DAG.getNode(ISD::BIT_CONVERT, VecVT, NewVec); } SDValue DAGTypeLegalizer::PromoteIntOp_FP_EXTEND(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::FP_EXTEND, N->getValueType(0), Op); } SDValue DAGTypeLegalizer::PromoteIntOp_FP_ROUND(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::FP_ROUND, N->getValueType(0), Op, DAG.getIntPtrConstant(0)); } SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo) { if (OpNo == 1) { // Promote the inserted value. This is valid because the type does not // have to match the vector element type. // Check that any extra bits introduced will be truncated away. assert(N->getOperand(1).getValueType().getSizeInBits() >= N->getValueType(0).getVectorElementType().getSizeInBits() && "Type of inserted value narrower than vector element type!"); return DAG.UpdateNodeOperands(SDValue(N, 0), N->getOperand(0), GetPromotedInteger(N->getOperand(1)), N->getOperand(2)); } assert(OpNo == 2 && "Different operand and result vector types?"); // Promote the index. SDValue Idx = N->getOperand(2); Idx = DAG.getZeroExtendInReg(GetPromotedInteger(Idx), Idx.getValueType()); return DAG.UpdateNodeOperands(SDValue(N, 0), N->getOperand(0), N->getOperand(1), Idx); } SDValue DAGTypeLegalizer::PromoteIntOp_INT_TO_FP(SDNode *N) { SDValue In = GetPromotedInteger(N->getOperand(0)); MVT OpVT = N->getOperand(0).getValueType(); if (N->getOpcode() == ISD::UINT_TO_FP) In = DAG.getZeroExtendInReg(In, OpVT); else In = DAG.getNode(ISD::SIGN_EXTEND_INREG, In.getValueType(), In, DAG.getValueType(OpVT)); return DAG.UpdateNodeOperands(SDValue(N, 0), In); } SDValue DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) { SDValue NewOps[6]; NewOps[0] = N->getOperand(0); for (unsigned i = 1; i < array_lengthof(NewOps); ++i) { SDValue Flag = GetPromotedInteger(N->getOperand(i)); NewOps[i] = DAG.getZeroExtendInReg(Flag, MVT::i1); } return DAG.UpdateNodeOperands(SDValue (N, 0), NewOps, array_lengthof(NewOps)); } SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) { assert(OpNo == 0 && "Only know how to promote condition"); SDValue Cond = GetPromotedInteger(N->getOperand(0)); // Promote condition. // The top bits of the promoted condition are not necessarily zero, ensure // that the value is properly zero extended. unsigned BitWidth = Cond.getValueSizeInBits(); if (!DAG.MaskedValueIsZero(Cond, APInt::getHighBitsSet(BitWidth, BitWidth-1))) Cond = DAG.getZeroExtendInReg(Cond, MVT::i1); // The chain (Op#0) and basic block destination (Op#2) are always legal types. return DAG.UpdateNodeOperands(SDValue(N, 0), Cond, N->getOperand(1), N->getOperand(2)); } SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) { assert(OpNo == 0 && "Don't know how to promote this operand!"); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); PromoteSetCCOperands(LHS, RHS, cast(N->getOperand(4))->get()); // The CC (#4) and the possible return values (#2 and #3) have legal types. return DAG.UpdateNodeOperands(SDValue(N, 0), LHS, RHS, N->getOperand(2), N->getOperand(3), N->getOperand(4)); } SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) { assert(OpNo == 0 && "Don't know how to promote this operand!"); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); PromoteSetCCOperands(LHS, RHS, cast(N->getOperand(2))->get()); // The CC (#2) is always legal. return DAG.UpdateNodeOperands(SDValue(N, 0), LHS, RHS, N->getOperand(2)); } SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op); return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(), Op, DAG.getValueType(N->getOperand(0).getValueType())); } SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){ assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); SDValue Ch = N->getChain(), Ptr = N->getBasePtr(); int SVOffset = N->getSrcValueOffset(); unsigned Alignment = N->getAlignment(); bool isVolatile = N->isVolatile(); SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value. assert(!N->isTruncatingStore() && "Cannot promote this store operand!"); // Truncate the value and store the result. return DAG.getTruncStore(Ch, Val, Ptr, N->getSrcValue(), SVOffset, N->getMemoryVT(), isVolatile, Alignment); } SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), Op); } SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op); return DAG.getZeroExtendInReg(Op, N->getOperand(0).getValueType()); } //===----------------------------------------------------------------------===// // Integer Result Expansion //===----------------------------------------------------------------------===// /// ExpandIntegerResult - This method is called when the specified result of the /// specified node is found to need expansion. At this point, the node may also /// have invalid operands or may have other results that need promotion, we just /// know that (at least) one result needs expansion. void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) { DEBUG(cerr << "Expand integer result: "; N->dump(&DAG); cerr << "\n"); SDValue Lo, Hi; Lo = Hi = SDValue(); // See if the target wants to custom expand this node. if (TLI.getOperationAction(N->getOpcode(), N->getValueType(ResNo)) == TargetLowering::Custom) { // If the target wants to, allow it to lower this itself. if (SDNode *P = TLI.ReplaceNodeResults(N, DAG)) { // Everything that once used N now uses P. We are guaranteed that the // result value types of N and the result value types of P match. ReplaceNodeWith(N, P); return; } } switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "ExpandIntegerResult #" << ResNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to expand the result of this operator!"); abort(); case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break; case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break; case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; case ISD::BIT_CONVERT: ExpandRes_BIT_CONVERT(N, Lo, Hi); break; case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break; case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break; case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break; case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break; case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break; case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break; case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break; case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break; case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break; case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break; case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break; case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break; case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break; case ISD::LOAD: ExpandIntRes_LOAD(cast(N), Lo, Hi); break; case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break; case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break; case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break; case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break; case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break; case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break; case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break; case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break; case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break; case ISD::AND: case ISD::OR: case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break; case ISD::ADD: case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break; case ISD::ADDC: case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break; case ISD::ADDE: case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break; } // If Lo/Hi is null, the sub-method took care of registering results etc. if (Lo.getNode()) SetExpandedInteger(SDValue(N, ResNo), Lo, Hi); } /// ExpandShiftByConstant - N is a shift by a value that needs to be expanded, /// and the shift amount is a constant 'Amt'. Expand the operation. void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt, SDValue &Lo, SDValue &Hi) { // Expand the incoming operand to be shifted, so that we have its parts SDValue InL, InH; GetExpandedInteger(N->getOperand(0), InL, InH); MVT NVT = InL.getValueType(); unsigned VTBits = N->getValueType(0).getSizeInBits(); unsigned NVTBits = NVT.getSizeInBits(); MVT ShTy = N->getOperand(1).getValueType(); if (N->getOpcode() == ISD::SHL) { if (Amt > VTBits) { Lo = Hi = DAG.getConstant(0, NVT); } else if (Amt > NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt-NVTBits,ShTy)); } else if (Amt == NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = InL; } else if (Amt == 1) { // Emit this X << 1 as X+X. SDVTList VTList = DAG.getVTList(NVT, MVT::Flag); SDValue LoOps[2] = { InL, InL }; Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); SDValue HiOps[3] = { InH, InH, Lo.getValue(1) }; Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt, ShTy)); Hi = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Amt, ShTy))); } return; } if (N->getOpcode() == ISD::SRL) { if (Amt > VTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getConstant(0, NVT); } else if (Amt > NVTBits) { Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy)); Hi = DAG.getConstant(0, NVT); } else if (Amt == NVTBits) { Lo = InH; Hi = DAG.getConstant(0, NVT); } else { Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Amt, ShTy))); Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt, ShTy)); } return; } assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); if (Amt > VTBits) { Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Amt > NVTBits) { Lo = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt-NVTBits, ShTy)); Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Amt == NVTBits) { Lo = InH; Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else { Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Amt, ShTy))); Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt, ShTy)); } } /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify /// this shift based on knowledge of the high bit of the shift amount. If we /// can tell this, we know that it is >= 32 or < 32, without knowing the actual /// shift amount. bool DAGTypeLegalizer:: ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue Amt = N->getOperand(1); MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); MVT ShTy = Amt.getValueType(); unsigned ShBits = ShTy.getSizeInBits(); unsigned NVTBits = NVT.getSizeInBits(); assert(isPowerOf2_32(NVTBits) && "Expanded integer type size not a power of two!"); APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); APInt KnownZero, KnownOne; DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne); // If we don't know anything about the high bits, exit. if (((KnownZero|KnownOne) & HighBitMask) == 0) return false; // Get the incoming operand to be shifted. SDValue InL, InH; GetExpandedInteger(N->getOperand(0), InL, InH); // If we know that any of the high bits of the shift amount are one, then we // can do this as a couple of simple shifts. if (KnownOne.intersects(HighBitMask)) { // Mask out the high bit, which we know is set. Amt = DAG.getNode(ISD::AND, ShTy, Amt, DAG.getConstant(~HighBitMask, ShTy)); switch (N->getOpcode()) { default: assert(0 && "Unknown shift"); case ISD::SHL: Lo = DAG.getConstant(0, NVT); // Low part is zero. Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. return true; case ISD::SRL: Hi = DAG.getConstant(0, NVT); // Hi part is zero. Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. return true; case ISD::SRA: Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. DAG.getConstant(NVTBits-1, ShTy)); Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. return true; } } // If we know that all of the high bits of the shift amount are zero, then we // can do this as a couple of simple shifts. if ((KnownZero & HighBitMask) == HighBitMask) { // Compute 32-amt. SDValue Amt2 = DAG.getNode(ISD::SUB, ShTy, DAG.getConstant(NVTBits, ShTy), Amt); unsigned Op1, Op2; switch (N->getOpcode()) { default: assert(0 && "Unknown shift"); case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break; case ISD::SRL: case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break; } Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt); Hi = DAG.getNode(ISD::OR, NVT, DAG.getNode(Op1, NVT, InH, Amt), DAG.getNode(Op2, NVT, InL, Amt2)); return true; } return false; } void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N, SDValue &Lo, SDValue &Hi) { // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; GetExpandedInteger(N->getOperand(0), LHSL, LHSH); GetExpandedInteger(N->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); SDValue LoOps[2] = { LHSL, RHSL }; SDValue HiOps[3] = { LHSH, RHSH }; if (N->getOpcode() == ISD::ADD) { Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); } } void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N, SDValue &Lo, SDValue &Hi) { // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; GetExpandedInteger(N->getOperand(0), LHSL, LHSH); GetExpandedInteger(N->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); SDValue LoOps[2] = { LHSL, RHSL }; SDValue HiOps[3] = { LHSH, RHSH }; if (N->getOpcode() == ISD::ADDC) { Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); } // Legalized the flag result - switch anything that used the old flag to // use the new one. ReplaceValueWith(SDValue(N, 1), Hi.getValue(1)); } void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N, SDValue &Lo, SDValue &Hi) { // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; GetExpandedInteger(N->getOperand(0), LHSL, LHSH); GetExpandedInteger(N->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) }; SDValue HiOps[3] = { LHSH, RHSH }; Lo = DAG.getNode(N->getOpcode(), VTList, LoOps, 3); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(N->getOpcode(), VTList, HiOps, 3); // Legalized the flag result - switch anything that used the old flag to // use the new one. ReplaceValueWith(SDValue(N, 1), Hi.getValue(1)); } void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDValue Op = N->getOperand(0); if (Op.getValueType().bitsLE(NVT)) { // The low part is any extension of the input (which degenerates to a copy). Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Op); Hi = DAG.getNode(ISD::UNDEF, NVT); // The high part is undefined. } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == PromoteInteger && "Only know how to promote this result!"); SDValue Res = GetPromotedInteger(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); } } void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N, SDValue &Lo, SDValue &Hi) { GetExpandedInteger(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); MVT EVT = cast(N->getOperand(1))->getVT(); unsigned NVTBits = NVT.getSizeInBits(); unsigned EVTBits = EVT.getSizeInBits(); if (NVTBits < EVTBits) { Hi = DAG.getNode(ISD::AssertSext, NVT, Hi, DAG.getValueType(MVT::getIntegerVT(EVTBits - NVTBits))); } else { Lo = DAG.getNode(ISD::AssertSext, NVT, Lo, DAG.getValueType(EVT)); // The high part replicates the sign bit of Lo, make it explicit. Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(NVTBits-1, TLI.getShiftAmountTy())); } } void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N, SDValue &Lo, SDValue &Hi) { GetExpandedInteger(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); MVT EVT = cast(N->getOperand(1))->getVT(); unsigned NVTBits = NVT.getSizeInBits(); unsigned EVTBits = EVT.getSizeInBits(); if (NVTBits < EVTBits) { Hi = DAG.getNode(ISD::AssertZext, NVT, Hi, DAG.getValueType(MVT::getIntegerVT(EVTBits - NVTBits))); } else { Lo = DAG.getNode(ISD::AssertZext, NVT, Lo, DAG.getValueType(EVT)); // The high part must be zero, make it explicit. Hi = DAG.getConstant(0, NVT); } } void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N, SDValue &Lo, SDValue &Hi) { GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands. Lo = DAG.getNode(ISD::BSWAP, Lo.getValueType(), Lo); Hi = DAG.getNode(ISD::BSWAP, Hi.getValueType(), Hi); } void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); unsigned NBitWidth = NVT.getSizeInBits(); const APInt &Cst = cast(N)->getAPIntValue(); Lo = DAG.getConstant(APInt(Cst).trunc(NBitWidth), NVT); Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT); } void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N, SDValue &Lo, SDValue &Hi) { // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32) GetExpandedInteger(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); SDValue HiNotZero = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi, DAG.getConstant(0, NVT), ISD::SETNE); SDValue LoLZ = DAG.getNode(ISD::CTLZ, NVT, Lo); SDValue HiLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); Lo = DAG.getNode(ISD::SELECT, NVT, HiNotZero, HiLZ, DAG.getNode(ISD::ADD, NVT, LoLZ, DAG.getConstant(NVT.getSizeInBits(), NVT))); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N, SDValue &Lo, SDValue &Hi) { // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo) GetExpandedInteger(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); Lo = DAG.getNode(ISD::ADD, NVT, DAG.getNode(ISD::CTPOP, NVT, Lo), DAG.getNode(ISD::CTPOP, NVT, Hi)); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N, SDValue &Lo, SDValue &Hi) { // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32) GetExpandedInteger(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); SDValue LoNotZero = DAG.getSetCC(TLI.getSetCCResultType(Lo), Lo, DAG.getConstant(0, NVT), ISD::SETNE); SDValue LoLZ = DAG.getNode(ISD::CTTZ, NVT, Lo); SDValue HiLZ = DAG.getNode(ISD::CTTZ, NVT, Hi); Lo = DAG.getNode(ISD::SELECT, NVT, LoNotZero, LoLZ, DAG.getNode(ISD::ADD, NVT, HiLZ, DAG.getConstant(NVT.getSizeInBits(), NVT))); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT VT = N->getValueType(0); SDValue Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!"); SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*sign irrelevant*/), Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT VT = N->getValueType(0); SDValue Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*sign irrelevant*/), Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi) { if (ISD::isNormalLoad(N)) { ExpandRes_NormalLoad(N, Lo, Hi); return; } assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); MVT VT = N->getValueType(0); MVT NVT = TLI.getTypeToTransformTo(VT); SDValue Ch = N->getChain(); SDValue Ptr = N->getBasePtr(); ISD::LoadExtType ExtType = N->getExtensionType(); int SVOffset = N->getSrcValueOffset(); unsigned Alignment = N->getAlignment(); bool isVolatile = N->isVolatile(); assert(NVT.isByteSized() && "Expanded type not byte sized!"); if (N->getMemoryVT().bitsLE(NVT)) { MVT EVT = N->getMemoryVT(); Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, EVT, isVolatile, Alignment); // Remember the chain. Ch = Lo.getValue(1); if (ExtType == ISD::SEXTLOAD) { // The high part is obtained by SRA'ing all but one of the bits of the // lo part. unsigned LoSize = Lo.getValueType().getSizeInBits(); Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); } else if (ExtType == ISD::ZEXTLOAD) { // The high part is just a zero. Hi = DAG.getConstant(0, NVT); } else { assert(ExtType == ISD::EXTLOAD && "Unknown extload!"); // The high part is undefined. Hi = DAG.getNode(ISD::UNDEF, NVT); } } else if (TLI.isLittleEndian()) { // Little-endian - low bits are at low addresses. Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset, isVolatile, Alignment); unsigned ExcessBits = N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); MVT NEVT = MVT::getIntegerVT(ExcessBits); // Increment the pointer to the other half. unsigned IncrementSize = NVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize, NEVT, isVolatile, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); } else { // Big-endian - high bits are at low addresses. Favor aligned loads at // the cost of some bit-fiddling. MVT EVT = N->getMemoryVT(); unsigned EBytes = EVT.getStoreSizeInBits()/8; unsigned IncrementSize = NVT.getSizeInBits()/8; unsigned ExcessBits = (EBytes - IncrementSize)*8; // Load both the high bits and maybe some of the low bits. Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits), isVolatile, Alignment); // Increment the pointer to the other half. Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); // Load the rest of the low bits. Lo = DAG.getExtLoad(ISD::ZEXTLOAD, NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize, MVT::getIntegerVT(ExcessBits), isVolatile, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); if (ExcessBits < NVT.getSizeInBits()) { // Transfer low bits from the bottom of Hi to the top of Lo. Lo = DAG.getNode(ISD::OR, NVT, Lo, DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(ExcessBits, TLI.getShiftAmountTy()))); // Move high bits to the right position in Hi. Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, NVT, Hi, DAG.getConstant(NVT.getSizeInBits() - ExcessBits, TLI.getShiftAmountTy())); } } // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDValue(N, 1), Ch); } void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N, SDValue &Lo, SDValue &Hi) { SDValue LL, LH, RL, RH; GetExpandedInteger(N->getOperand(0), LL, LH); GetExpandedInteger(N->getOperand(1), RL, RH); Lo = DAG.getNode(N->getOpcode(), LL.getValueType(), LL, RL); Hi = DAG.getNode(N->getOpcode(), LL.getValueType(), LH, RH); } void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT VT = N->getValueType(0); MVT NVT = TLI.getTypeToTransformTo(VT); bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { SDValue LL, LH, RL, RH; GetExpandedInteger(N->getOperand(0), LL, LH); GetExpandedInteger(N->getOperand(1), RL, RH); unsigned OuterBitSize = VT.getSizeInBits(); unsigned InnerBitSize = NVT.getSizeInBits(); unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { // The inputs are both zero-extended. if (HasUMUL_LOHI) { // We can emit a umul_lohi. Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Hi = SDValue(Lo.getNode(), 1); return; } if (HasMULHU) { // We can emit a mulhu+mul. Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); return; } } if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { // The input values are both sign-extended. if (HasSMUL_LOHI) { // We can emit a smul_lohi. Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Hi = SDValue(Lo.getNode(), 1); return; } if (HasMULHS) { // We can emit a mulhs+mul. Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); return; } } if (HasUMUL_LOHI) { // Lo,Hi = umul LHS, RHS. SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Lo = UMulLOHI; Hi = UMulLOHI.getValue(1); RH = DAG.getNode(ISD::MUL, NVT, LL, RH); LH = DAG.getNode(ISD::MUL, NVT, LH, RL); Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); return; } if (HasMULHU) { Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); RH = DAG.getNode(ISD::MUL, NVT, LL, RH); LH = DAG.getNode(ISD::MUL, NVT, LH, RL); Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); return; } } // If nothing else, we can make a libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i32) LC = RTLIB::MUL_I32; else if (VT == MVT::i64) LC = RTLIB::MUL_I64; else if (VT == MVT::i128) LC = RTLIB::MUL_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(LC, VT, Ops, 2, true/*sign irrelevant*/), Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT VT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i32) LC = RTLIB::SDIV_I32; else if (VT == MVT::i64) LC = RTLIB::SDIV_I64; else if (VT == MVT::i128) LC = RTLIB::SDIV_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(LC, VT, Ops, 2, true), Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT VT = N->getValueType(0); // If we can emit an efficient shift operation, do so now. Check to see if // the RHS is a constant. if (ConstantSDNode *CN = dyn_cast(N->getOperand(1))) return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi); // If we can determine that the high bit of the shift is zero or one, even if // the low bits are variable, emit this shift in an optimized form. if (ExpandShiftWithKnownAmountBit(N, Lo, Hi)) return; // If this target supports shift_PARTS, use it. First, map to the _PARTS opc. unsigned PartsOpc; if (N->getOpcode() == ISD::SHL) { PartsOpc = ISD::SHL_PARTS; } else if (N->getOpcode() == ISD::SRL) { PartsOpc = ISD::SRL_PARTS; } else { assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); PartsOpc = ISD::SRA_PARTS; } // Next check to see if the target supports this SHL_PARTS operation or if it // will custom expand it. MVT NVT = TLI.getTypeToTransformTo(VT); TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT); if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || Action == TargetLowering::Custom) { // Expand the subcomponents. SDValue LHSL, LHSH; GetExpandedInteger(N->getOperand(0), LHSL, LHSH); SDValue Ops[] = { LHSL, LHSH, N->getOperand(1) }; MVT VT = LHSL.getValueType(); Lo = DAG.getNode(PartsOpc, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); Hi = Lo.getValue(1); return; } // Otherwise, emit a libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; bool isSigned; if (N->getOpcode() == ISD::SHL) { isSigned = false; /*sign irrelevant*/ if (VT == MVT::i32) LC = RTLIB::SHL_I32; else if (VT == MVT::i64) LC = RTLIB::SHL_I64; else if (VT == MVT::i128) LC = RTLIB::SHL_I128; } else if (N->getOpcode() == ISD::SRL) { isSigned = false; if (VT == MVT::i32) LC = RTLIB::SRL_I32; else if (VT == MVT::i64) LC = RTLIB::SRL_I64; else if (VT == MVT::i128) LC = RTLIB::SRL_I128; } else { assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); isSigned = true; if (VT == MVT::i32) LC = RTLIB::SRA_I32; else if (VT == MVT::i64) LC = RTLIB::SRA_I64; else if (VT == MVT::i128) LC = RTLIB::SRA_I128; } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported shift!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned), Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDValue Op = N->getOperand(0); if (Op.getValueType().bitsLE(NVT)) { // The low part is sign extension of the input (which degenerates to a copy). Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, N->getOperand(0)); // The high part is obtained by SRA'ing all but one of the bits of low part. unsigned LoSize = NVT.getSizeInBits(); Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == PromoteInteger && "Only know how to promote this result!"); SDValue Res = GetPromotedInteger(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); unsigned ExcessBits = Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi, DAG.getValueType(MVT::getIntegerVT(ExcessBits))); } } void DAGTypeLegalizer:: ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) { GetExpandedInteger(N->getOperand(0), Lo, Hi); MVT EVT = cast(N->getOperand(1))->getVT(); if (EVT.bitsLE(Lo.getValueType())) { // sext_inreg the low part if needed. Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, Lo.getValueType(), Lo, N->getOperand(1)); // The high part gets the sign extension from the lo-part. This handles // things like sextinreg V:i64 from i8. Hi = DAG.getNode(ISD::SRA, Hi.getValueType(), Lo, DAG.getConstant(Hi.getValueType().getSizeInBits()-1, TLI.getShiftAmountTy())); } else { // For example, extension of an i48 to an i64. Leave the low part alone, // sext_inreg the high part. unsigned ExcessBits = EVT.getSizeInBits() - Lo.getValueType().getSizeInBits(); Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi, DAG.getValueType(MVT::getIntegerVT(ExcessBits))); } } void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT VT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i32) LC = RTLIB::SREM_I32; else if (VT == MVT::i64) LC = RTLIB::SREM_I64; else if (VT == MVT::i128) LC = RTLIB::SREM_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(LC, VT, Ops, 2, true), Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); Lo = DAG.getNode(ISD::TRUNCATE, NVT, N->getOperand(0)); Hi = DAG.getNode(ISD::SRL, N->getOperand(0).getValueType(), N->getOperand(0), DAG.getConstant(NVT.getSizeInBits(), TLI.getShiftAmountTy())); Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi); } void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT VT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i32) LC = RTLIB::UDIV_I32; else if (VT == MVT::i64) LC = RTLIB::UDIV_I64; else if (VT == MVT::i128) LC = RTLIB::UDIV_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(LC, VT, Ops, 2, false), Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT VT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i32) LC = RTLIB::UREM_I32; else if (VT == MVT::i64) LC = RTLIB::UREM_I64; else if (VT == MVT::i128) LC = RTLIB::UREM_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!"); SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(LC, VT, Ops, 2, false), Lo, Hi); } void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N, SDValue &Lo, SDValue &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDValue Op = N->getOperand(0); if (Op.getValueType().bitsLE(NVT)) { // The low part is zero extension of the input (which degenerates to a copy). Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, N->getOperand(0)); Hi = DAG.getConstant(0, NVT); // The high part is just a zero. } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == PromoteInteger && "Only know how to promote this result!"); SDValue Res = GetPromotedInteger(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); unsigned ExcessBits = Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); Hi = DAG.getZeroExtendInReg(Hi, MVT::getIntegerVT(ExcessBits)); } } //===----------------------------------------------------------------------===// // Integer Operand Expansion //===----------------------------------------------------------------------===// /// ExpandIntegerOperand - This method is called when the specified operand of /// the specified node is found to need expansion. At this point, all of the /// result types of the node are known to be legal, but other operands of the /// node may need promotion or expansion as well as the specified one. bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) { DEBUG(cerr << "Expand integer operand: "; N->dump(&DAG); cerr << "\n"); SDValue Res = SDValue(); if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType()) == TargetLowering::Custom) Res = TLI.LowerOperation(SDValue(N, OpNo), DAG); if (Res.getNode() == 0) { switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "ExpandIntegerOperand Op #" << OpNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to expand this operator's operand!"); abort(); case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break; case ISD::BIT_CONVERT: Res = ExpandOp_BIT_CONVERT(N); break; case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break; case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break; case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break; case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break; case ISD::SINT_TO_FP: Res = ExpandIntOp_SINT_TO_FP(N); break; case ISD::STORE: Res = ExpandIntOp_STORE(cast(N), OpNo); break; case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break; case ISD::UINT_TO_FP: Res = ExpandIntOp_UINT_TO_FP(N); break; } } // If the result is null, the sub-method took care of registering results etc. if (!Res.getNode()) return false; // If the result is N, the sub-method updated N in place. Check to see if any // operands are new, and if so, mark them. if (Res.getNode() == N) { // Mark N as new and remark N and its operands. This allows us to correctly // revisit N if it needs another step of expansion and allows us to visit // any new operands to N. ReanalyzeNode(N); return true; } assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDValue(N, 0), Res); return false; } /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code /// is shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode) { SDValue LHSLo, LHSHi, RHSLo, RHSHi; GetExpandedInteger(NewLHS, LHSLo, LHSHi); GetExpandedInteger(NewRHS, RHSLo, RHSHi); MVT VT = NewLHS.getValueType(); if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) { if (RHSLo == RHSHi) { if (ConstantSDNode *RHSCST = dyn_cast(RHSLo)) { if (RHSCST->isAllOnesValue()) { // Equality comparison to -1. NewLHS = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); NewRHS = RHSLo; return; } } } NewLHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); NewRHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); NewLHS = DAG.getNode(ISD::OR, NewLHS.getValueType(), NewLHS, NewRHS); NewRHS = DAG.getConstant(0, NewLHS.getValueType()); return; } // If this is a comparison of the sign bit, just look at the top part. // X > -1, x < 0 if (ConstantSDNode *CST = dyn_cast(NewRHS)) if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0 (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1 NewLHS = LHSHi; NewRHS = RHSHi; return; } // FIXME: This generated code sucks. ISD::CondCode LowCC; switch (CCCode) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETLT: case ISD::SETULT: LowCC = ISD::SETULT; break; case ISD::SETGT: case ISD::SETUGT: LowCC = ISD::SETUGT; break; case ISD::SETLE: case ISD::SETULE: LowCC = ISD::SETULE; break; case ISD::SETGE: case ISD::SETUGE: LowCC = ISD::SETUGE; break; } // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; // NOTE: on targets without efficient SELECT of bools, we can always use // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); SDValue Tmp1, Tmp2; Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC, false, DagCombineInfo); if (!Tmp1.getNode()) Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC); Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode, false, DagCombineInfo); if (!Tmp2.getNode()) Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, DAG.getCondCode(CCCode)); ConstantSDNode *Tmp1C = dyn_cast(Tmp1.getNode()); ConstantSDNode *Tmp2C = dyn_cast(Tmp2.getNode()); if ((Tmp1C && Tmp1C->isNullValue()) || (Tmp2C && Tmp2C->isNullValue() && (CCCode == ISD::SETLE || CCCode == ISD::SETGE || CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || (Tmp2C && Tmp2C->getAPIntValue() == 1 && (CCCode == ISD::SETLT || CCCode == ISD::SETGT || CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { // low part is known false, returns high part. // For LE / GE, if high part is known false, ignore the low part. // For LT / GT, if high part is known true, ignore the low part. NewLHS = Tmp2; NewRHS = SDValue(); return; } NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETEQ, false, DagCombineInfo); if (!NewLHS.getNode()) NewLHS = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETEQ); NewLHS = DAG.getNode(ISD::SELECT, Tmp1.getValueType(), NewLHS, Tmp1, Tmp2); NewRHS = SDValue(); } SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) { SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.getNode() == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return DAG.UpdateNodeOperands(SDValue(N, 0), N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)); } SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(4))->get(); IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.getNode() == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return DAG.UpdateNodeOperands(SDValue(N, 0), NewLHS, NewRHS, N->getOperand(2), N->getOperand(3), DAG.getCondCode(CCCode)); } SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) { SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode); // If ExpandSetCCOperands returned a scalar, use it. if (NewRHS.getNode() == 0) { assert(NewLHS.getValueType() == N->getValueType(0) && "Unexpected setcc expansion!"); return NewLHS; } // Otherwise, update N to have the operands specified. return DAG.UpdateNodeOperands(SDValue(N, 0), NewLHS, NewRHS, DAG.getCondCode(CCCode)); } SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) { SDValue Op = N->getOperand(0); MVT DstVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Don't know how to expand this SINT_TO_FP!"); return MakeLibCall(LC, DstVT, &Op, 1, true); } SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) { if (ISD::isNormalStore(N)) return ExpandOp_NormalStore(N, OpNo); assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); assert(OpNo == 1 && "Can only expand the stored value so far"); MVT VT = N->getOperand(1).getValueType(); MVT NVT = TLI.getTypeToTransformTo(VT); SDValue Ch = N->getChain(); SDValue Ptr = N->getBasePtr(); int SVOffset = N->getSrcValueOffset(); unsigned Alignment = N->getAlignment(); bool isVolatile = N->isVolatile(); SDValue Lo, Hi; assert(NVT.isByteSized() && "Expanded type not byte sized!"); if (N->getMemoryVT().bitsLE(NVT)) { GetExpandedInteger(N->getValue(), Lo, Hi); return DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, N->getMemoryVT(), isVolatile, Alignment); } else if (TLI.isLittleEndian()) { // Little-endian - low bits are at low addresses. GetExpandedInteger(N->getValue(), Lo, Hi); Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, isVolatile, Alignment); unsigned ExcessBits = N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); MVT NEVT = MVT::getIntegerVT(ExcessBits); // Increment the pointer to the other half. unsigned IncrementSize = NVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize, NEVT, isVolatile, MinAlign(Alignment, IncrementSize)); return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); } else { // Big-endian - high bits are at low addresses. Favor aligned stores at // the cost of some bit-fiddling. GetExpandedInteger(N->getValue(), Lo, Hi); MVT EVT = N->getMemoryVT(); unsigned EBytes = EVT.getStoreSizeInBits()/8; unsigned IncrementSize = NVT.getSizeInBits()/8; unsigned ExcessBits = (EBytes - IncrementSize)*8; MVT HiVT = MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits); if (ExcessBits < NVT.getSizeInBits()) { // Transfer high bits from the top of Lo to the bottom of Hi. Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(NVT.getSizeInBits() - ExcessBits, TLI.getShiftAmountTy())); Hi = DAG.getNode(ISD::OR, NVT, Hi, DAG.getNode(ISD::SRL, NVT, Lo, DAG.getConstant(ExcessBits, TLI.getShiftAmountTy()))); } // Store both the high bits and maybe some of the low bits. Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset, HiVT, isVolatile, Alignment); // Increment the pointer to the other half. Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); // Store the lowest ExcessBits bits in the second half. Lo = DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset+IncrementSize, MVT::getIntegerVT(ExcessBits), isVolatile, MinAlign(Alignment, IncrementSize)); return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); } } SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) { SDValue InL, InH; GetExpandedInteger(N->getOperand(0), InL, InH); // Just truncate the low part of the source. return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), InL); } SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) { SDValue Op = N->getOperand(0); MVT SrcVT = Op.getValueType(); MVT DstVT = N->getValueType(0); if (TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){ // Do a signed conversion then adjust the result. SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, DstVT, Op); SignedConv = TLI.LowerOperation(SignedConv, DAG); // The result of the signed conversion needs adjusting if the 'sign bit' of // the incoming integer was set. To handle this, we dynamically test to see // if it is set, and, if so, add a fudge factor. const uint64_t F32TwoE32 = 0x4F800000ULL; const uint64_t F32TwoE64 = 0x5F800000ULL; const uint64_t F32TwoE128 = 0x7F800000ULL; APInt FF(32, 0); if (SrcVT == MVT::i32) FF = APInt(32, F32TwoE32); else if (SrcVT == MVT::i64) FF = APInt(32, F32TwoE64); else if (SrcVT == MVT::i128) FF = APInt(32, F32TwoE128); else assert(false && "Unsupported UINT_TO_FP!"); // Check whether the sign bit is set. SDValue Lo, Hi; GetExpandedInteger(Op, Lo, Hi); SDValue SignSet = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi, DAG.getConstant(0, Hi.getValueType()), ISD::SETLT); // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. SDValue FudgePtr = DAG.getConstantPool(ConstantInt::get(FF.zext(64)), TLI.getPointerTy()); // Get a pointer to FF if the sign bit was set, or to 0 otherwise. SDValue Zero = DAG.getIntPtrConstant(0); SDValue Four = DAG.getIntPtrConstant(4); if (TLI.isBigEndian()) std::swap(Zero, Four); SDValue Offset = DAG.getNode(ISD::SELECT, Zero.getValueType(), SignSet, Zero, Four); FudgePtr = DAG.getNode(ISD::ADD, TLI.getPointerTy(), FudgePtr, Offset); // Load the value out, extending it from f32 to the destination float type. // FIXME: Avoid the extend by constructing the right constant pool? SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, DstVT, DAG.getEntryNode(), FudgePtr, NULL, 0, MVT::f32); return DAG.getNode(ISD::FADD, DstVT, SignedConv, Fudge); } // Otherwise, use a libcall. RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Don't know how to expand this UINT_TO_FP!"); return MakeLibCall(LC, DstVT, &Op, 1, true); }