//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the DAGTypeLegalizer class. This is a private interface // shared between the code that implements the SelectionDAG::LegalizeTypes // method. // //===----------------------------------------------------------------------===// #ifndef SELECTIONDAG_LEGALIZETYPES_H #define SELECTIONDAG_LEGALIZETYPES_H #define DEBUG_TYPE "legalize-types" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetLowering.h" namespace llvm { //===----------------------------------------------------------------------===// /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks /// on it until only value types the target machine can handle are left. This /// involves promoting small sizes to large sizes or splitting up large values /// into small values. /// class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer { const TargetLowering &TLI; SelectionDAG &DAG; public: // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information // about the state of the node. The enum has all the values. enum NodeIdFlags { /// ReadyToProcess - All operands have been processed, so this node is ready /// to be handled. ReadyToProcess = 0, /// NewNode - This is a new node, not before seen, that was created in the /// process of legalizing some other node. NewNode = -1, /// Unanalyzed - This node's ID needs to be set to the number of its /// unprocessed operands. Unanalyzed = -2, /// Processed - This is a node that has already been processed. Processed = -3 // 1+ - This is a node which has this many unprocessed operands. }; private: /// ValueTypeActions - This is a bitvector that contains two bits for each /// simple value type, where the two bits correspond to the LegalizeAction /// enum from TargetLowering. This can be queried with "getTypeAction(VT)". TargetLowering::ValueTypeActionImpl ValueTypeActions; /// getTypeAction - Return how we should legalize values of this type. TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const { return TLI.getTypeAction(*DAG.getContext(), VT); } /// isTypeLegal - Return true if this type is legal on this target. bool isTypeLegal(EVT VT) const { return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal; } EVT getSetCCResultType(EVT VT) const { return TLI.getSetCCResultType(*DAG.getContext(), VT); } /// IgnoreNodeResults - Pretend all of this node's results are legal. bool IgnoreNodeResults(SDNode *N) const { return N->getOpcode() == ISD::TargetConstant; } /// PromotedIntegers - For integer nodes that are below legal width, this map /// indicates what promoted value to use. SmallDenseMap PromotedIntegers; /// ExpandedIntegers - For integer nodes that need to be expanded this map /// indicates which operands are the expanded version of the input. SmallDenseMap, 8> ExpandedIntegers; /// SoftenedFloats - For floating point nodes converted to integers of /// the same size, this map indicates the converted value to use. SmallDenseMap SoftenedFloats; /// ExpandedFloats - For float nodes that need to be expanded this map /// indicates which operands are the expanded version of the input. SmallDenseMap, 8> ExpandedFloats; /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the /// scalar value of type 'ty' to use. SmallDenseMap ScalarizedVectors; /// SplitVectors - For nodes that need to be split this map indicates /// which operands are the expanded version of the input. SmallDenseMap, 8> SplitVectors; /// WidenedVectors - For vector nodes that need to be widened, indicates /// the widened value to use. SmallDenseMap WidenedVectors; /// ReplacedValues - For values that have been replaced with another, /// indicates the replacement value to use. SmallDenseMap ReplacedValues; /// Worklist - This defines a worklist of nodes to process. In order to be /// pushed onto this worklist, all operands of a node must have already been /// processed. SmallVector Worklist; public: explicit DAGTypeLegalizer(SelectionDAG &dag) : TLI(dag.getTargetLoweringInfo()), DAG(dag), ValueTypeActions(TLI.getValueTypeActions()) { assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && "Too many value types for ValueTypeActions to hold!"); } /// run - This is the main entry point for the type legalizer. This does a /// top-down traversal of the dag, legalizing types as it goes. Returns /// "true" if it made any changes. bool run(); void NoteDeletion(SDNode *Old, SDNode *New) { ExpungeNode(Old); ExpungeNode(New); for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) ReplacedValues[SDValue(Old, i)] = SDValue(New, i); } SelectionDAG &getDAG() const { return DAG; } private: SDNode *AnalyzeNewNode(SDNode *N); void AnalyzeNewValue(SDValue &Val); void ExpungeNode(SDNode *N); void PerformExpensiveChecks(); void RemapValue(SDValue &N); // Common routines. SDValue BitConvertToInteger(SDValue Op); SDValue BitConvertVectorToIntegerVector(SDValue Op); SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT); bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult); bool CustomWidenLowerNode(SDNode *N, EVT VT); /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES /// node with the corresponding input operand, except for the result 'ResNo', /// for which the corresponding input operand is returned. SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo); SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index); SDValue JoinIntegers(SDValue Lo, SDValue Hi); SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned); std::pair ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); std::pair ExpandAtomic(SDNode *Node); SDValue PromoteTargetBoolean(SDValue Bool, EVT VT); void ReplaceValueWith(SDValue From, SDValue To); void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT, SDValue &Lo, SDValue &Hi); //===--------------------------------------------------------------------===// // Integer Promotion Support: LegalizeIntegerTypes.cpp //===--------------------------------------------------------------------===// /// GetPromotedInteger - Given a processed operand Op which was promoted to a /// larger integer type, this returns the promoted value. The low bits of the /// promoted value corresponding to the original type are exactly equal to Op. /// The extra bits contain rubbish, so the promoted value may need to be zero- /// or sign-extended from the original type before it is usable (the helpers /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). /// For example, if Op is an i16 and was promoted to an i32, then this method /// returns an i32, the lower 16 bits of which coincide with Op, and the upper /// 16 bits of which contain rubbish. SDValue GetPromotedInteger(SDValue Op) { SDValue &PromotedOp = PromotedIntegers[Op]; RemapValue(PromotedOp); assert(PromotedOp.getNode() && "Operand wasn't promoted?"); return PromotedOp; } void SetPromotedInteger(SDValue Op, SDValue Result); /// SExtPromotedInteger - Get a promoted operand and sign extend it to the /// final size. SDValue SExtPromotedInteger(SDValue Op) { EVT OldVT = Op.getValueType(); SDLoc dl(Op); Op = GetPromotedInteger(Op); return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op, DAG.getValueType(OldVT)); } /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the /// final size. SDValue ZExtPromotedInteger(SDValue Op) { EVT OldVT = Op.getValueType(); SDLoc dl(Op); Op = GetPromotedInteger(Op); return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType()); } // Integer Result Promotion. void PromoteIntegerResult(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_AssertSext(SDNode *N); SDValue PromoteIntRes_AssertZext(SDNode *N); SDValue PromoteIntRes_Atomic0(AtomicSDNode *N); SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); SDValue PromoteIntRes_Atomic2(AtomicSDNode *N); SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N); SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N); SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N); SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N); SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N); SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N); SDValue PromoteIntRes_BITCAST(SDNode *N); SDValue PromoteIntRes_BSWAP(SDNode *N); SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); SDValue PromoteIntRes_Constant(SDNode *N); SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N); SDValue PromoteIntRes_CTLZ(SDNode *N); SDValue PromoteIntRes_CTPOP(SDNode *N); SDValue PromoteIntRes_CTTZ(SDNode *N); SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N); SDValue PromoteIntRes_INT_EXTEND(SDNode *N); SDValue PromoteIntRes_LOAD(LoadSDNode *N); SDValue PromoteIntRes_Overflow(SDNode *N); SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_SDIV(SDNode *N); SDValue PromoteIntRes_SELECT(SDNode *N); SDValue PromoteIntRes_VSELECT(SDNode *N); SDValue PromoteIntRes_SELECT_CC(SDNode *N); SDValue PromoteIntRes_SETCC(SDNode *N); SDValue PromoteIntRes_SHL(SDNode *N); SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); SDValue PromoteIntRes_SRA(SDNode *N); SDValue PromoteIntRes_SRL(SDNode *N); SDValue PromoteIntRes_TRUNCATE(SDNode *N); SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_UDIV(SDNode *N); SDValue PromoteIntRes_UNDEF(SDNode *N); SDValue PromoteIntRes_VAARG(SDNode *N); SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo); // Integer Operand Promotion. bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo); SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N); SDValue PromoteIntOp_BITCAST(SDNode *N); SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N); SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N); SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N); SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N); SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_Shift(SDNode *N); SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue PromoteIntOp_TRUNCATE(SDNode *N); SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); //===--------------------------------------------------------------------===// // Integer Expansion Support: LegalizeIntegerTypes.cpp //===--------------------------------------------------------------------===// /// GetExpandedInteger - Given a processed operand Op which was expanded into /// two integers of half the size, this returns the two halves. The low bits /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi. /// For example, if Op is an i64 which was expanded into two i32's, then this /// method returns the two i32's, with Lo being equal to the lower 32 bits of /// Op, and Hi being equal to the upper 32 bits. void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); // Integer Result Expansion. void ExpandIntegerResult(SDNode *N, unsigned ResNo); void ExpandIntRes_MERGE_VALUES (SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandShiftByConstant(SDNode *N, unsigned Amt, SDValue &Lo, SDValue &Hi); bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); // Integer Operand Expansion. bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo); SDValue ExpandIntOp_BITCAST(SDNode *N); SDValue ExpandIntOp_BR_CC(SDNode *N); SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N); SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N); SDValue ExpandIntOp_SELECT_CC(SDNode *N); SDValue ExpandIntOp_SETCC(SDNode *N); SDValue ExpandIntOp_Shift(SDNode *N); SDValue ExpandIntOp_SINT_TO_FP(SDNode *N); SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue ExpandIntOp_TRUNCATE(SDNode *N); SDValue ExpandIntOp_UINT_TO_FP(SDNode *N); SDValue ExpandIntOp_RETURNADDR(SDNode *N); SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N); void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, SDLoc dl); //===--------------------------------------------------------------------===// // Float to Integer Conversion Support: LegalizeFloatTypes.cpp //===--------------------------------------------------------------------===// /// GetSoftenedFloat - Given a processed operand Op which was converted to an /// integer of the same size, this returns the integer. The integer contains /// exactly the same bits as Op - only the type changed. For example, if Op /// is an f32 which was softened to an i32, then this method returns an i32, /// the bits of which coincide with those of Op. SDValue GetSoftenedFloat(SDValue Op) { SDValue &SoftenedOp = SoftenedFloats[Op]; RemapValue(SoftenedOp); assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?"); return SoftenedOp; } void SetSoftenedFloat(SDValue Op, SDValue Result); // Result Float to Integer Conversion. void SoftenFloatResult(SDNode *N, unsigned OpNo); SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo); SDValue SoftenFloatRes_BITCAST(SDNode *N); SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N); SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N); SDValue SoftenFloatRes_FABS(SDNode *N); SDValue SoftenFloatRes_FADD(SDNode *N); SDValue SoftenFloatRes_FCEIL(SDNode *N); SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); SDValue SoftenFloatRes_FCOS(SDNode *N); SDValue SoftenFloatRes_FDIV(SDNode *N); SDValue SoftenFloatRes_FEXP(SDNode *N); SDValue SoftenFloatRes_FEXP2(SDNode *N); SDValue SoftenFloatRes_FFLOOR(SDNode *N); SDValue SoftenFloatRes_FLOG(SDNode *N); SDValue SoftenFloatRes_FLOG2(SDNode *N); SDValue SoftenFloatRes_FLOG10(SDNode *N); SDValue SoftenFloatRes_FMA(SDNode *N); SDValue SoftenFloatRes_FMUL(SDNode *N); SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); SDValue SoftenFloatRes_FNEG(SDNode *N); SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N); SDValue SoftenFloatRes_FP_ROUND(SDNode *N); SDValue SoftenFloatRes_FPOW(SDNode *N); SDValue SoftenFloatRes_FPOWI(SDNode *N); SDValue SoftenFloatRes_FREM(SDNode *N); SDValue SoftenFloatRes_FRINT(SDNode *N); SDValue SoftenFloatRes_FROUND(SDNode *N); SDValue SoftenFloatRes_FSIN(SDNode *N); SDValue SoftenFloatRes_FSQRT(SDNode *N); SDValue SoftenFloatRes_FSUB(SDNode *N); SDValue SoftenFloatRes_FTRUNC(SDNode *N); SDValue SoftenFloatRes_LOAD(SDNode *N); SDValue SoftenFloatRes_SELECT(SDNode *N); SDValue SoftenFloatRes_SELECT_CC(SDNode *N); SDValue SoftenFloatRes_UNDEF(SDNode *N); SDValue SoftenFloatRes_VAARG(SDNode *N); SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); // Operand Float to Integer Conversion. bool SoftenFloatOperand(SDNode *N, unsigned OpNo); SDValue SoftenFloatOp_BITCAST(SDNode *N); SDValue SoftenFloatOp_BR_CC(SDNode *N); SDValue SoftenFloatOp_FP_ROUND(SDNode *N); SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N); SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N); SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N); SDValue SoftenFloatOp_SELECT_CC(SDNode *N); SDValue SoftenFloatOp_SETCC(SDNode *N); SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); //===--------------------------------------------------------------------===// // Float Expansion Support: LegalizeFloatTypes.cpp //===--------------------------------------------------------------------===// /// GetExpandedFloat - Given a processed operand Op which was expanded into /// two floating point values of half the size, this returns the two halves. /// The low bits of Op are exactly equal to the bits of Lo; the high bits /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded /// into two f64's, then this method returns the two f64's, with Lo being /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits. void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); // Float Result Expansion. void ExpandFloatResult(SDNode *N, unsigned ResNo); void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); // Float Operand Expansion. bool ExpandFloatOperand(SDNode *N, unsigned OperandNo); SDValue ExpandFloatOp_BR_CC(SDNode *N); SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N); SDValue ExpandFloatOp_FP_ROUND(SDNode *N); SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N); SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N); SDValue ExpandFloatOp_SELECT_CC(SDNode *N); SDValue ExpandFloatOp_SETCC(SDNode *N); SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, SDLoc dl); //===--------------------------------------------------------------------===// // Scalarization Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// /// GetScalarizedVector - Given a processed one-element vector Op which was /// scalarized to its element type, this returns the element. For example, /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32. SDValue GetScalarizedVector(SDValue Op) { SDValue &ScalarizedOp = ScalarizedVectors[Op]; RemapValue(ScalarizedOp); assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); return ScalarizedOp; } void SetScalarizedVector(SDValue Op, SDValue Result); // Vector Result Scalarization: <1 x ty> -> ty. void ScalarizeVectorResult(SDNode *N, unsigned OpNo); SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo); SDValue ScalarizeVecRes_BinOp(SDNode *N); SDValue ScalarizeVecRes_TernaryOp(SDNode *N); SDValue ScalarizeVecRes_UnaryOp(SDNode *N); SDValue ScalarizeVecRes_InregOp(SDNode *N); SDValue ScalarizeVecRes_BITCAST(SDNode *N); SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N); SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N); SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N); SDValue ScalarizeVecRes_FP_ROUND(SDNode *N); SDValue ScalarizeVecRes_FPOWI(SDNode *N); SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N); SDValue ScalarizeVecRes_VSELECT(SDNode *N); SDValue ScalarizeVecRes_SELECT(SDNode *N); SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); SDValue ScalarizeVecRes_SETCC(SDNode *N); SDValue ScalarizeVecRes_UNDEF(SDNode *N); SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); SDValue ScalarizeVecRes_VSETCC(SDNode *N); // Vector Operand Scalarization: <1 x ty> -> ty. bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); SDValue ScalarizeVecOp_BITCAST(SDNode *N); SDValue ScalarizeVecOp_UnaryOp(SDNode *N); SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); //===--------------------------------------------------------------------===// // Vector Splitting Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// /// GetSplitVector - Given a processed vector Op which was split into vectors /// of half the size, this method returns the halves. The first elements of /// Op coincide with the elements of Lo; the remaining elements of Op coincide /// with the elements of Hi: Op is what you would get by concatenating Lo and /// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then /// this method returns the two v4i32's, with Lo corresponding to the first 4 /// elements of Op, and Hi to the last 4 elements. void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. void SplitVectorResult(SDNode *N, unsigned OpNo); void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, SDValue &Hi); // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. bool SplitVectorOperand(SDNode *N, unsigned OpNo); SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo); SDValue SplitVecOp_UnaryOp(SDNode *N); SDValue SplitVecOp_BITCAST(SDNode *N); SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); SDValue SplitVecOp_TRUNCATE(SDNode *N); SDValue SplitVecOp_VSETCC(SDNode *N); SDValue SplitVecOp_FP_ROUND(SDNode *N); //===--------------------------------------------------------------------===// // Vector Widening Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// /// GetWidenedVector - Given a processed vector Op which was widened into a /// larger vector, this method returns the larger vector. The elements of /// the returned vector consist of the elements of Op followed by elements /// containing rubbish. For example, if Op is a v2i32 that was widened to a /// v4i32, then this method returns a v4i32 for which the first two elements /// are the same as those of Op, while the last two elements contain rubbish. SDValue GetWidenedVector(SDValue Op) { SDValue &WidenedOp = WidenedVectors[Op]; RemapValue(WidenedOp); assert(WidenedOp.getNode() && "Operand wasn't widened?"); return WidenedOp; } void SetWidenedVector(SDValue Op, SDValue Result); // Widen Vector Result Promotion. void WidenVectorResult(SDNode *N, unsigned ResNo); SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo); SDValue WidenVecRes_BITCAST(SDNode* N); SDValue WidenVecRes_BUILD_VECTOR(SDNode* N); SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N); SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N); SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N); SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N); SDValue WidenVecRes_LOAD(SDNode* N); SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N); SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N); SDValue WidenVecRes_SELECT(SDNode* N); SDValue WidenVecRes_SELECT_CC(SDNode* N); SDValue WidenVecRes_SETCC(SDNode* N); SDValue WidenVecRes_UNDEF(SDNode *N); SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N); SDValue WidenVecRes_VSETCC(SDNode* N); SDValue WidenVecRes_Ternary(SDNode *N); SDValue WidenVecRes_Binary(SDNode *N); SDValue WidenVecRes_BinaryCanTrap(SDNode *N); SDValue WidenVecRes_Convert(SDNode *N); SDValue WidenVecRes_POWI(SDNode *N); SDValue WidenVecRes_Shift(SDNode *N); SDValue WidenVecRes_Unary(SDNode *N); SDValue WidenVecRes_InregOp(SDNode *N); // Widen Vector Operand. bool WidenVectorOperand(SDNode *N, unsigned OpNo); SDValue WidenVecOp_BITCAST(SDNode *N); SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N); SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N); SDValue WidenVecOp_STORE(SDNode* N); SDValue WidenVecOp_SETCC(SDNode* N); SDValue WidenVecOp_Convert(SDNode *N); //===--------------------------------------------------------------------===// // Vector Widening Utilities Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// /// Helper GenWidenVectorLoads - Helper function to generate a set of /// loads to load a vector with a resulting wider type. It takes /// LdChain: list of chains for the load to be generated. /// Ld: load to widen SDValue GenWidenVectorLoads(SmallVectorImpl &LdChain, LoadSDNode *LD); /// GenWidenVectorExtLoads - Helper function to generate a set of extension /// loads to load a ector with a resulting wider type. It takes /// LdChain: list of chains for the load to be generated. /// Ld: load to widen /// ExtType: extension element type SDValue GenWidenVectorExtLoads(SmallVectorImpl &LdChain, LoadSDNode *LD, ISD::LoadExtType ExtType); /// Helper genWidenVectorStores - Helper function to generate a set of /// stores to store a widen vector into non widen memory /// StChain: list of chains for the stores we have generated /// ST: store of a widen value void GenWidenVectorStores(SmallVectorImpl &StChain, StoreSDNode *ST); /// Helper genWidenVectorTruncStores - Helper function to generate a set of /// stores to store a truncate widen vector into non widen memory /// StChain: list of chains for the stores we have generated /// ST: store of a widen value void GenWidenVectorTruncStores(SmallVectorImpl &StChain, StoreSDNode *ST); /// Modifies a vector input (widen or narrows) to a vector of NVT. The /// input vector must have the same element type as NVT. SDValue ModifyToType(SDValue InOp, EVT WidenVT); //===--------------------------------------------------------------------===// // Generic Splitting: LegalizeTypesGeneric.cpp //===--------------------------------------------------------------------===// // Legalization methods which only use that the illegal type is split into two // not necessarily identical types. As such they can be used for splitting // vectors and expanding integers and floats. void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { if (Op.getValueType().isVector()) GetSplitVector(Op, Lo, Hi); else if (Op.getValueType().isInteger()) GetExpandedInteger(Op, Lo, Hi); else GetExpandedFloat(Op, Lo, Hi); } /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and /// high parts of the given value. void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi); // Generic Result Splitting. void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi); void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); //===--------------------------------------------------------------------===// // Generic Expansion: LegalizeTypesGeneric.cpp //===--------------------------------------------------------------------===// // Legalization methods which only use that the illegal type is split into two // identical types of half the size, and that the Lo/Hi part is stored first // in memory on little/big-endian machines, followed by the Hi/Lo part. As // such they can be used for expanding integers and floats. void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { if (Op.getValueType().isInteger()) GetExpandedInteger(Op, Lo, Hi); else GetExpandedFloat(Op, Lo, Hi); } /// This function will split the integer \p Op into \p NumElements /// operations of type \p EltVT and store them in \p Ops. void IntegerToVector(SDValue Op, unsigned NumElements, SmallVectorImpl &Ops, EVT EltVT); // Generic Result Expansion. void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi); void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); // Generic Operand Expansion. SDValue ExpandOp_BITCAST (SDNode *N); SDValue ExpandOp_BUILD_VECTOR (SDNode *N); SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N); SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N); SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N); SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); }; } // end namespace llvm. #endif