//===-- SelectionDAGBuild.h - Selection-DAG building ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements routines for translating from LLVM IR into SelectionDAG IR. // //===----------------------------------------------------------------------===// #ifndef SELECTIONDAGBUILD_H #define SELECTIONDAGBUILD_H #include "llvm/Constants.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #ifndef NDEBUG #include "llvm/ADT/SmallSet.h" #endif #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/CallSite.h" #include "llvm/Target/TargetMachine.h" #include #include namespace llvm { class AliasAnalysis; class AllocaInst; class BasicBlock; class BitCastInst; class BranchInst; class CallInst; class ExtractElementInst; class ExtractValueInst; class FCmpInst; class FPExtInst; class FPToSIInst; class FPToUIInst; class FPTruncInst; class FreeInst; class Function; class GetElementPtrInst; class GCFunctionInfo; class ICmpInst; class IntToPtrInst; class InvokeInst; class InsertElementInst; class InsertValueInst; class Instruction; class LoadInst; class MachineBasicBlock; class MachineFunction; class MachineInstr; class MachineModuleInfo; class MachineRegisterInfo; class MallocInst; class PHINode; class PtrToIntInst; class ReturnInst; class SDISelAsmOperandInfo; class SExtInst; class SelectInst; class ShuffleVectorInst; class SIToFPInst; class StoreInst; class SwitchInst; class TargetData; class TargetLowering; class TruncInst; class UIToFPInst; class UnreachableInst; class UnwindInst; class VICmpInst; class VFCmpInst; class VAArgInst; class ZExtInst; //===--------------------------------------------------------------------===// /// FunctionLoweringInfo - This contains information that is global to a /// function that is used when lowering a region of the function. /// class FunctionLoweringInfo { public: TargetLowering &TLI; Function *Fn; MachineFunction *MF; MachineRegisterInfo *RegInfo; explicit FunctionLoweringInfo(TargetLowering &TLI); /// set - Initialize this FunctionLoweringInfo with the given Function /// and its associated MachineFunction. /// void set(Function &Fn, MachineFunction &MF, SelectionDAG &DAG, bool EnableFastISel); /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. DenseMap MBBMap; /// ValueMap - Since we emit code for the function a basic block at a time, /// we must remember which virtual registers hold the values for /// cross-basic-block values. DenseMap ValueMap; /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in /// the entry block. This allows the allocas to be efficiently referenced /// anywhere in the function. DenseMap StaticAllocaMap; #ifndef NDEBUG SmallSet CatchInfoLost; SmallSet CatchInfoFound; #endif unsigned MakeReg(MVT VT); /// isExportedInst - Return true if the specified value is an instruction /// exported from its block. bool isExportedInst(const Value *V) { return ValueMap.count(V); } unsigned CreateRegForValue(const Value *V); unsigned InitializeRegForValue(const Value *V) { unsigned &R = ValueMap[V]; assert(R == 0 && "Already initialized this value register!"); return R = CreateRegForValue(V); } struct LiveOutInfo { unsigned NumSignBits; APInt KnownOne, KnownZero; LiveOutInfo() : NumSignBits(0), KnownOne(1, 0), KnownZero(1, 0) {} }; /// LiveOutRegInfo - Information about live out vregs, indexed by their /// register number offset by 'FirstVirtualRegister'. std::vector LiveOutRegInfo; /// clear - Clear out all the function-specific state. This returns this /// FunctionLoweringInfo to an empty state, ready to be used for a /// different function. void clear() { MBBMap.clear(); ValueMap.clear(); StaticAllocaMap.clear(); #ifndef NDEBUG CatchInfoLost.clear(); CatchInfoFound.clear(); #endif LiveOutRegInfo.clear(); } }; //===----------------------------------------------------------------------===// /// SelectionDAGLowering - This is the common target-independent lowering /// implementation that is parameterized by a TargetLowering object. /// Also, targets can overload any lowering method. /// class SelectionDAGLowering { MachineBasicBlock *CurMBB; /// CurDebugLoc - current file + line number. Changes as we build the DAG. DebugLoc CurDebugLoc; DenseMap NodeMap; /// PendingLoads - Loads are not emitted to the program immediately. We bunch /// them up and then emit token factor nodes when possible. This allows us to /// get simple disambiguation between loads without worrying about alias /// analysis. SmallVector PendingLoads; /// PendingExports - CopyToReg nodes that copy values to virtual registers /// for export to other blocks need to be emitted before any terminator /// instruction, but they have no other ordering requirements. We bunch them /// up and the emit a single tokenfactor for them just before terminator /// instructions. SmallVector PendingExports; /// Case - A struct to record the Value for a switch case, and the /// case's target basic block. struct Case { Constant* Low; Constant* High; MachineBasicBlock* BB; Case() : Low(0), High(0), BB(0) { } Case(Constant* low, Constant* high, MachineBasicBlock* bb) : Low(low), High(high), BB(bb) { } uint64_t size() const { uint64_t rHigh = cast(High)->getSExtValue(); uint64_t rLow = cast(Low)->getSExtValue(); return (rHigh - rLow + 1ULL); } }; struct CaseBits { uint64_t Mask; MachineBasicBlock* BB; unsigned Bits; CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits): Mask(mask), BB(bb), Bits(bits) { } }; typedef std::vector CaseVector; typedef std::vector CaseBitsVector; typedef CaseVector::iterator CaseItr; typedef std::pair CaseRange; /// CaseRec - A struct with ctor used in lowering switches to a binary tree /// of conditional branches. struct CaseRec { CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) : CaseBB(bb), LT(lt), GE(ge), Range(r) {} /// CaseBB - The MBB in which to emit the compare and branch MachineBasicBlock *CaseBB; /// LT, GE - If nonzero, we know the current case value must be less-than or /// greater-than-or-equal-to these Constants. Constant *LT; Constant *GE; /// Range - A pair of iterators representing the range of case values to be /// processed at this point in the binary search tree. CaseRange Range; }; typedef std::vector CaseRecVector; /// The comparison function for sorting the switch case values in the vector. /// WARNING: Case ranges should be disjoint! struct CaseCmp { bool operator () (const Case& C1, const Case& C2) { assert(isa(C1.Low) && isa(C2.High)); const ConstantInt* CI1 = cast(C1.Low); const ConstantInt* CI2 = cast(C2.High); return CI1->getValue().slt(CI2->getValue()); } }; struct CaseBitsCmp { bool operator () (const CaseBits& C1, const CaseBits& C2) { return C1.Bits > C2.Bits; } }; size_t Clusterify(CaseVector& Cases, const SwitchInst &SI); /// CaseBlock - This structure is used to communicate between SDLowering and /// SDISel for the code generation of additional basic blocks needed by multi- /// case switch statements. struct CaseBlock { CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle, MachineBasicBlock *truebb, MachineBasicBlock *falsebb, MachineBasicBlock *me) : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {} // CC - the condition code to use for the case block's setcc node ISD::CondCode CC; // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. // Emit by default LHS op RHS. MHS is used for range comparisons: // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). Value *CmpLHS, *CmpMHS, *CmpRHS; // TrueBB/FalseBB - the block to branch to if the setcc is true/false. MachineBasicBlock *TrueBB, *FalseBB; // ThisBB - the block into which to emit the code for the setcc and branches MachineBasicBlock *ThisBB; }; struct JumpTable { JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} /// Reg - the virtual register containing the index of the jump table entry //. to jump to. unsigned Reg; /// JTI - the JumpTableIndex for this jump table in the function. unsigned JTI; /// MBB - the MBB into which to emit the code for the indirect jump. MachineBasicBlock *MBB; /// Default - the MBB of the default bb, which is a successor of the range /// check MBB. This is when updating PHI nodes in successors. MachineBasicBlock *Default; }; struct JumpTableHeader { JumpTableHeader(APInt F, APInt L, Value* SV, MachineBasicBlock* H, bool E = false): First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {} APInt First; APInt Last; Value *SValue; MachineBasicBlock *HeaderBB; bool Emitted; }; typedef std::pair JumpTableBlock; struct BitTestCase { BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr): Mask(M), ThisBB(T), TargetBB(Tr) { } uint64_t Mask; MachineBasicBlock* ThisBB; MachineBasicBlock* TargetBB; }; typedef SmallVector BitTestInfo; struct BitTestBlock { BitTestBlock(APInt F, APInt R, Value* SV, unsigned Rg, bool E, MachineBasicBlock* P, MachineBasicBlock* D, const BitTestInfo& C): First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E), Parent(P), Default(D), Cases(C) { } APInt First; APInt Range; Value *SValue; unsigned Reg; bool Emitted; MachineBasicBlock *Parent; MachineBasicBlock *Default; BitTestInfo Cases; }; public: // TLI - This is information that describes the available target features we // need for lowering. This indicates when operations are unavailable, // implemented with a libcall, etc. TargetLowering &TLI; SelectionDAG &DAG; const TargetData *TD; AliasAnalysis *AA; /// SwitchCases - Vector of CaseBlock structures used to communicate /// SwitchInst code generation information. std::vector SwitchCases; /// JTCases - Vector of JumpTable structures used to communicate /// SwitchInst code generation information. std::vector JTCases; /// BitTestCases - Vector of BitTestBlock structures used to communicate /// SwitchInst code generation information. std::vector BitTestCases; std::vector > PHINodesToUpdate; // Emit PHI-node-operand constants only once even if used by multiple // PHI nodes. DenseMap ConstantsOut; /// FuncInfo - Information about the function as a whole. /// FunctionLoweringInfo &FuncInfo; /// OptLevel - What optimization level we're generating code for. /// CodeGenOpt::Level OptLevel; /// GFI - Garbage collection metadata for the function. GCFunctionInfo *GFI; SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, FunctionLoweringInfo &funcinfo, CodeGenOpt::Level ol) : CurDebugLoc(DebugLoc::getUnknownLoc()), TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol) { } void init(GCFunctionInfo *gfi, AliasAnalysis &aa); /// clear - Clear out the curret SelectionDAG and the associated /// state and prepare this SelectionDAGLowering object to be used /// for a new block. This doesn't clear out information about /// additional blocks that are needed to complete switch lowering /// or PHI node updating; that information is cleared out as it is /// consumed. void clear(); /// getRoot - Return the current virtual root of the Selection DAG, /// flushing any PendingLoad items. This must be done before emitting /// a store or any other node that may need to be ordered after any /// prior load instructions. /// SDValue getRoot(); /// getControlRoot - Similar to getRoot, but instead of flushing all the /// PendingLoad items, flush all the PendingExports items. It is necessary /// to do this before emitting a terminator instruction. /// SDValue getControlRoot(); DebugLoc getCurDebugLoc() const { return CurDebugLoc; } void setCurDebugLoc(DebugLoc dl) { CurDebugLoc = dl; } void CopyValueToVirtualRegister(Value *V, unsigned Reg); void visit(Instruction &I); void visit(unsigned Opcode, User &I); void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } SDValue getValue(const Value *V); void setValue(const Value *V, SDValue NewN) { SDValue &N = NodeMap[V]; assert(N.getNode() == 0 && "Already set a value for this node!"); N = NewN; } void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, std::set &OutputRegs, std::set &InputRegs); void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, unsigned Opc); void EmitBranchForMergedCondition(Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB); bool ShouldEmitAsBranches(const std::vector &Cases); bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB); void CopyToExportRegsIfNeeded(Value *V); void ExportFromCurrentBlock(Value *V); void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall, MachineBasicBlock *LandingPad = NULL); private: // Terminator instructions. void visitRet(ReturnInst &I); void visitBr(BranchInst &I); void visitSwitch(SwitchInst &I); void visitUnreachable(UnreachableInst &I) { /* noop */ } // Helpers for visitSwitch bool handleSmallSwitchRange(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default); bool handleJTSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default); bool handleBTSplitSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default); bool handleBitTestsSwitchCase(CaseRec& CR, CaseRecVector& WorkList, Value* SV, MachineBasicBlock* Default); public: void visitSwitchCase(CaseBlock &CB); void visitBitTestHeader(BitTestBlock &B); void visitBitTestCase(MachineBasicBlock* NextMBB, unsigned Reg, BitTestCase &B); void visitJumpTable(JumpTable &JT); void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH); private: // These all get lowered before this pass. void visitInvoke(InvokeInst &I); void visitUnwind(UnwindInst &I); void visitBinary(User &I, unsigned OpCode); void visitShift(User &I, unsigned Opcode); void visitAdd(User &I); void visitSub(User &I); void visitMul(User &I); void visitURem(User &I) { visitBinary(I, ISD::UREM); } void visitSRem(User &I) { visitBinary(I, ISD::SREM); } void visitFRem(User &I) { visitBinary(I, ISD::FREM); } void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); } void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); } void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); } void visitAnd (User &I) { visitBinary(I, ISD::AND); } void visitOr (User &I) { visitBinary(I, ISD::OR); } void visitXor (User &I) { visitBinary(I, ISD::XOR); } void visitShl (User &I) { visitShift(I, ISD::SHL); } void visitLShr(User &I) { visitShift(I, ISD::SRL); } void visitAShr(User &I) { visitShift(I, ISD::SRA); } void visitICmp(User &I); void visitFCmp(User &I); void visitVICmp(User &I); void visitVFCmp(User &I); // Visit the conversion instructions void visitTrunc(User &I); void visitZExt(User &I); void visitSExt(User &I); void visitFPTrunc(User &I); void visitFPExt(User &I); void visitFPToUI(User &I); void visitFPToSI(User &I); void visitUIToFP(User &I); void visitSIToFP(User &I); void visitPtrToInt(User &I); void visitIntToPtr(User &I); void visitBitCast(User &I); void visitExtractElement(User &I); void visitInsertElement(User &I); void visitShuffleVector(User &I); void visitExtractValue(ExtractValueInst &I); void visitInsertValue(InsertValueInst &I); void visitGetElementPtr(User &I); void visitSelect(User &I); void visitMalloc(MallocInst &I); void visitFree(FreeInst &I); void visitAlloca(AllocaInst &I); void visitLoad(LoadInst &I); void visitStore(StoreInst &I); void visitPHI(PHINode &I) { } // PHI nodes are handled specially. void visitCall(CallInst &I); void visitInlineAsm(CallSite CS); const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic); void visitPow(CallInst &I); void visitExp2(CallInst &I); void visitExp(CallInst &I); void visitLog(CallInst &I); void visitLog2(CallInst &I); void visitLog10(CallInst &I); void visitVAStart(CallInst &I); void visitVAArg(VAArgInst &I); void visitVAEnd(CallInst &I); void visitVACopy(CallInst &I); void visitUserOp1(Instruction &I) { assert(0 && "UserOp1 should not exist at instruction selection time!"); abort(); } void visitUserOp2(Instruction &I) { assert(0 && "UserOp2 should not exist at instruction selection time!"); abort(); } const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op); const char *implVisitAluOverflow(CallInst &I, ISD::NodeType Op); }; /// AddCatchInfo - Extract the personality and type infos from an eh.selector /// call, and add them to the specified machine basic block. void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI, MachineBasicBlock *MBB); } // end namespace llvm #endif