//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple register coalescing pass that attempts to // aggressively coalesce every register copy that it can. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regcoalescing" #include "SimpleRegisterCoalescing.h" #include "VirtRegMap.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/Value.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; STATISTIC(numJoins , "Number of interval joins performed"); STATISTIC(numCrossRCs , "Number of cross class joins performed"); STATISTIC(numCommutes , "Number of instruction commuting performed"); STATISTIC(numExtends , "Number of copies extended"); STATISTIC(NumReMats , "Number of instructions re-materialized"); STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); STATISTIC(numAborts , "Number of times interval joining aborted"); STATISTIC(numDeadValNo, "Number of valno def marked dead"); char SimpleRegisterCoalescing::ID = 0; static cl::opt EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true)); static cl::opt DisableCrossClassJoin("disable-cross-class-join", cl::desc("Avoid coalescing cross register class copies"), cl::init(false), cl::Hidden); static cl::opt DisablePhysicalJoin("disable-physical-join", cl::desc("Avoid coalescing physical register copies"), cl::init(false), cl::Hidden); INITIALIZE_AG_PASS(SimpleRegisterCoalescing, RegisterCoalescer, "simple-register-coalescing", "Simple Register Coalescing", false, false, true); char &llvm::SimpleRegisterCoalescingID = SimpleRegisterCoalescing::ID; void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); if (StrongPHIElim) AU.addPreservedID(StrongPHIEliminationID); else AU.addPreservedID(PHIEliminationID); AU.addPreservedID(TwoAddressInstructionPassID); MachineFunctionPass::getAnalysisUsage(AU); } /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA /// being the source and IntB being the dest, thus this defines a value number /// in IntB. If the source value number (in IntA) is defined by a copy from B, /// see if we can merge these two pieces of B into a single value number, /// eliminating a copy. For example: /// /// A3 = B0 /// ... /// B1 = A3 <- this copy /// /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 /// value number to be replaced with B0 (which simplifies the B liveinterval). /// /// This returns true if an interval was modified. /// bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI) { // Bail if there is no dst interval - can happen when merging physical subreg // operations. if (!li_->hasInterval(CP.getDstReg())) return false; LiveInterval &IntA = li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); LiveInterval &IntB = li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex(); // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); if (BLR == IntB.end()) return false; VNInfo *BValNo = BLR->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (!BValNo->getCopy()) return false; assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A3 in the example. SlotIndex CopyUseIdx = CopyIdx.getUseIndex(); LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx); // The live range might not exist after fun with physreg coalescing. if (ALR == IntA.end()) return false; VNInfo *AValNo = ALR->valno; // If it's re-defined by an early clobber somewhere in the live range, then // it's not safe to eliminate the copy. FIXME: This is a temporary workaround. // See PR3149: // 172 %ECX = MOV32rr %reg1039 // 180 INLINEASM , 10, %EAX, 14, %ECX, 9, // %EAX, // 36, , 1, %reg0, 0, 9, %ECX, 36, , 1, %reg0, 0 // 188 %EAX = MOV32rr %EAX // 196 %ECX = MOV32rr %ECX // 204 %ECX = MOV32rr %ECX // 212 %EAX = MOV32rr %EAX // 220 %EAX = MOV32rr %EAX // 228 %reg1039 = MOV32rr %ECX // The early clobber operand ties ECX input to the ECX def. // // The live interval of ECX is represented as this: // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47) // The coalescer has no idea there was a def in the middle of [174,230]. if (AValNo->hasRedefByEC()) return false; // If AValNo is defined as a copy from IntB, we can potentially process this. // Get the instruction that defines this value number. if (!CP.isCoalescable(AValNo->getCopy())) return false; // Get the LiveRange in IntB that this value number starts with. LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot()); if (ValLR == IntB.end()) return false; // Make sure that the end of the live range is inside the same block as // CopyMI. MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end.getPrevSlot()); if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent()) return false; // Okay, we now know that ValLR ends in the same block that the CopyMI // live-range starts. If there are no intervening live ranges between them in // IntB, we can merge them. if (ValLR+1 != BLR) return false; // If a live interval is a physical register, conservatively check if any // of its sub-registers is overlapping the live interval of the virtual // register. If so, do not coalesce. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) && *tri_->getSubRegisters(IntB.reg)) { for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) { DEBUG({ dbgs() << "\t\tInterfere with sub-register "; li_->getInterval(*SR).print(dbgs(), tri_); }); return false; } } DEBUG({ dbgs() << "Extending: "; IntB.print(dbgs(), tri_); }); SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start; // We are about to delete CopyMI, so need to remove it as the 'instruction // that defines this value #'. Update the valnum with the new defining // instruction #. BValNo->def = FillerStart; BValNo->setCopy(0); // Okay, we can merge them. We need to insert a new liverange: // [ValLR.end, BLR.begin) of either value number, then we merge the // two value numbers. IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); // If the IntB live range is assigned to a physical register, and if that // physreg has sub-registers, update their live intervals as well. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) { for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; LiveInterval &SRLI = li_->getInterval(*SR); SRLI.addRange(LiveRange(FillerStart, FillerEnd, SRLI.getNextValue(FillerStart, 0, true, li_->getVNInfoAllocator()))); } } // Okay, merge "B1" into the same value number as "B0". if (BValNo != ValLR->valno) { IntB.MergeValueNumberInto(BValNo, ValLR->valno); } DEBUG({ dbgs() << " result = "; IntB.print(dbgs(), tri_); dbgs() << "\n"; }); // If the source instruction was killing the source register before the // merge, unset the isKill marker given the live range has been extended. int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); if (UIdx != -1) { ValLREndInst->getOperand(UIdx).setIsKill(false); } // If the copy instruction was killing the destination register before the // merge, find the last use and trim the live range. That will also add the // isKill marker. if (ALR->end == CopyIdx) TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR); ++numExtends; return true; } /// HasOtherReachingDefs - Return true if there are definitions of IntB /// other than BValNo val# that can reach uses of AValno val# of IntA. bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, VNInfo *AValNo, VNInfo *BValNo) { for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); AI != AE; ++AI) { if (AI->valno != AValNo) continue; LiveInterval::Ranges::iterator BI = std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start); if (BI != IntB.ranges.begin()) --BI; for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) { if (BI->valno == BValNo) continue; // When BValNo is null, we're looking for a dummy clobber-value for a subreg. if (!BValNo && !BI->valno->isDefAccurate() && !BI->valno->getCopy()) continue; if (BI->start <= AI->start && BI->end > AI->start) return true; if (BI->start > AI->start && BI->start < AI->end) return true; } } return false; } static void TransferImplicitOps(MachineInstr *MI, MachineInstr *NewMI) { for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isImplicit()) NewMI->addOperand(MO); } } /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with /// IntA being the source and IntB being the dest, thus this defines a value /// number in IntB. If the source value number (in IntA) is defined by a /// commutable instruction and its other operand is coalesced to the copy dest /// register, see if we can transform the copy into a noop by commuting the /// definition. For example, /// /// A3 = op A2 B0 /// ... /// B1 = A3 <- this copy /// ... /// = op A3 <- more uses /// /// ==> /// /// B2 = op B0 A2 /// ... /// B1 = B2 <- now an identify copy /// ... /// = op B2 <- more uses /// /// This returns true if an interval was modified. /// bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(const CoalescerPair &CP, MachineInstr *CopyMI) { // FIXME: For now, only eliminate the copy by commuting its def when the // source register is a virtual register. We want to guard against cases // where the copy is a back edge copy and commuting the def lengthen the // live interval of the source register to the entire loop. if (CP.isPhys() && CP.isFlipped()) return false; // Bail if there is no dst interval. if (!li_->hasInterval(CP.getDstReg())) return false; SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex(); LiveInterval &IntA = li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); LiveInterval &IntB = li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); if (BLR == IntB.end()) return false; VNInfo *BValNo = BLR->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (!BValNo->getCopy()) return false; assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A3 in the example. LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx.getUseIndex()); // assert(ALR != IntA.end() && "Live range not found!"); VNInfo *AValNo = ALR->valno; // If other defs can reach uses of this def, then it's not safe to perform // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be // tested? if (AValNo->isPHIDef() || !AValNo->isDefAccurate() || AValNo->isUnused() || AValNo->hasPHIKill()) return false; MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def); if (!DefMI) return false; const TargetInstrDesc &TID = DefMI->getDesc(); if (!TID.isCommutable()) return false; // If DefMI is a two-address instruction then commuting it will change the // destination register. int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); assert(DefIdx != -1); unsigned UseOpIdx; if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) return false; unsigned Op1, Op2, NewDstIdx; if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2)) return false; if (Op1 == UseOpIdx) NewDstIdx = Op2; else if (Op2 == UseOpIdx) NewDstIdx = Op1; else return false; MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); unsigned NewReg = NewDstMO.getReg(); if (NewReg != IntB.reg || !NewDstMO.isKill()) return false; // Make sure there are no other definitions of IntB that would reach the // uses which the new definition can reach. if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) return false; // Abort if the aliases of IntB.reg have values that are not simply the // clobbers from the superreg. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS) if (li_->hasInterval(*AS) && HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0)) return false; // If some of the uses of IntA.reg is already coalesced away, return false. // It's not possible to determine whether it's safe to perform the coalescing. for (MachineRegisterInfo::use_nodbg_iterator UI = mri_->use_nodbg_begin(IntA.reg), UE = mri_->use_nodbg_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; SlotIndex UseIdx = li_->getInstructionIndex(UseMI); LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); if (ULR == IntA.end()) continue; if (ULR->valno == AValNo && JoinedCopies.count(UseMI)) return false; } DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << *DefMI); // At this point we have decided that it is legal to do this // transformation. Start by commuting the instruction. MachineBasicBlock *MBB = DefMI->getParent(); MachineInstr *NewMI = tii_->commuteInstruction(DefMI); if (!NewMI) return false; if (NewMI != DefMI) { li_->ReplaceMachineInstrInMaps(DefMI, NewMI); MBB->insert(DefMI, NewMI); MBB->erase(DefMI); } unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false); NewMI->getOperand(OpIdx).setIsKill(); bool BHasPHIKill = BValNo->hasPHIKill(); SmallVector BDeadValNos; std::map BExtend; // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. // A = or A, B // ... // B = A // ... // C = A // ... // = B bool Extended = BLR->end > ALR->end && ALR->end != ALR->start; if (Extended) BExtend[ALR->end] = BLR->end; // Update uses of IntA of the specific Val# with IntB. for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg), UE = mri_->use_end(); UI != UE;) { MachineOperand &UseMO = UI.getOperand(); MachineInstr *UseMI = &*UI; ++UI; if (JoinedCopies.count(UseMI)) continue; if (UseMI->isDebugValue()) { // FIXME These don't have an instruction index. Not clear we have enough // info to decide whether to do this replacement or not. For now do it. UseMO.setReg(NewReg); continue; } SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex(); LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); if (ULR == IntA.end() || ULR->valno != AValNo) continue; if (TargetRegisterInfo::isPhysicalRegister(NewReg)) UseMO.substPhysReg(NewReg, *tri_); else UseMO.setReg(NewReg); if (UseMI == CopyMI) continue; if (UseMO.isKill()) { if (Extended) UseMO.setIsKill(false); } if (!UseMI->isCopy()) continue; if (UseMI->getOperand(0).getReg() != IntB.reg || UseMI->getOperand(0).getSubReg()) continue; // This copy will become a noop. If it's defining a new val#, // remove that val# as well. However this live range is being // extended to the end of the existing live range defined by the copy. SlotIndex DefIdx = UseIdx.getDefIndex(); const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx); if (!DLR) continue; BHasPHIKill |= DLR->valno->hasPHIKill(); assert(DLR->valno->def == DefIdx); BDeadValNos.push_back(DLR->valno); BExtend[DLR->start] = DLR->end; JoinedCopies.insert(UseMI); } // We need to insert a new liverange: [ALR.start, LastUse). It may be we can // simply extend BLR if CopyMI doesn't end the range. DEBUG({ dbgs() << "Extending: "; IntB.print(dbgs(), tri_); }); // Remove val#'s defined by copies that will be coalesced away. for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) { VNInfo *DeadVNI = BDeadValNos[i]; if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) { for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS) { if (!li_->hasInterval(*AS)) continue; LiveInterval &ASLI = li_->getInterval(*AS); if (const LiveRange *ASLR = ASLI.getLiveRangeContaining(DeadVNI->def)) ASLI.removeValNo(ASLR->valno); } } IntB.removeValNo(BDeadValNos[i]); } // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition // is updated. VNInfo *ValNo = BValNo; ValNo->def = AValNo->def; ValNo->setCopy(0); for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); AI != AE; ++AI) { if (AI->valno != AValNo) continue; SlotIndex End = AI->end; std::map::iterator EI = BExtend.find(End); if (EI != BExtend.end()) End = EI->second; IntB.addRange(LiveRange(AI->start, End, ValNo)); } ValNo->setHasPHIKill(BHasPHIKill); DEBUG({ dbgs() << " result = "; IntB.print(dbgs(), tri_); dbgs() << "\nShortening: "; IntA.print(dbgs(), tri_); }); IntA.removeValNo(AValNo); DEBUG({ dbgs() << " result = "; IntA.print(dbgs(), tri_); dbgs() << '\n'; }); ++numCommutes; return true; } /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply /// fallthoughs to SuccMBB. static bool isSameOrFallThroughBB(MachineBasicBlock *MBB, MachineBasicBlock *SuccMBB, const TargetInstrInfo *tii_) { if (MBB == SuccMBB) return true; MachineBasicBlock *TBB = 0, *FBB = 0; SmallVector Cond; return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB && MBB->isSuccessor(SuccMBB); } /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range /// from a physical register live interval as well as from the live intervals /// of its sub-registers. static void removeRange(LiveInterval &li, SlotIndex Start, SlotIndex End, LiveIntervals *li_, const TargetRegisterInfo *tri_) { li.removeRange(Start, End, true); if (TargetRegisterInfo::isPhysicalRegister(li.reg)) { for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; LiveInterval &sli = li_->getInterval(*SR); SlotIndex RemoveStart = Start; SlotIndex RemoveEnd = Start; while (RemoveEnd != End) { LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart); if (LR == sli.end()) break; RemoveEnd = (LR->end < End) ? LR->end : End; sli.removeRange(RemoveStart, RemoveEnd, true); RemoveStart = RemoveEnd; } } } } /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block /// as the copy instruction, trim the live interval to the last use and return /// true. bool SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx, MachineBasicBlock *CopyMBB, LiveInterval &li, const LiveRange *LR) { SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB); SlotIndex LastUseIdx; MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx); if (LastUse) { MachineInstr *LastUseMI = LastUse->getParent(); if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) { // r1024 = op // ... // BB1: // = r1024 // // BB2: // r1025 = r1024 if (MBBStart < LR->end) removeRange(li, MBBStart, LR->end, li_, tri_); return true; } // There are uses before the copy, just shorten the live range to the end // of last use. LastUse->setIsKill(); removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_); if (LastUseMI->isCopy()) { MachineOperand &DefMO = LastUseMI->getOperand(0); if (DefMO.getReg() == li.reg && !DefMO.getSubReg()) DefMO.setIsDead(); } return true; } // Is it livein? if (LR->start <= MBBStart && LR->end > MBBStart) { if (LR->start == li_->getZeroIndex()) { assert(TargetRegisterInfo::isPhysicalRegister(li.reg)); // Live-in to the function but dead. Remove it from entry live-in set. mf_->begin()->removeLiveIn(li.reg); } // FIXME: Shorten intervals in BBs that reaches this BB. } return false; } /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial /// computation, replace the copy by rematerialize the definition. bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg, unsigned DstSubIdx, MachineInstr *CopyMI) { SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex(); LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx); assert(SrcLR != SrcInt.end() && "Live range not found!"); VNInfo *ValNo = SrcLR->valno; // If other defs can reach uses of this def, then it's not safe to perform // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be // tested? if (ValNo->isPHIDef() || !ValNo->isDefAccurate() || ValNo->isUnused() || ValNo->hasPHIKill()) return false; MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def); assert(DefMI && "Defining instruction disappeared"); const TargetInstrDesc &TID = DefMI->getDesc(); if (!TID.isAsCheapAsAMove()) return false; if (!tii_->isTriviallyReMaterializable(DefMI, AA)) return false; bool SawStore = false; if (!DefMI->isSafeToMove(tii_, AA, SawStore)) return false; if (TID.getNumDefs() != 1) return false; if (!DefMI->isImplicitDef()) { // Make sure the copy destination register class fits the instruction // definition register class. The mismatch can happen as a result of earlier // extract_subreg, insert_subreg, subreg_to_reg coalescing. const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_); if (TargetRegisterInfo::isVirtualRegister(DstReg)) { if (mri_->getRegClass(DstReg) != RC) return false; } else if (!RC->contains(DstReg)) return false; } // If destination register has a sub-register index on it, make sure it mtches // the instruction register class. if (DstSubIdx) { const TargetInstrDesc &TID = DefMI->getDesc(); if (TID.getNumDefs() != 1) return false; const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg); const TargetRegisterClass *DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx); const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_); if (DefRC == DstRC) DstSubIdx = 0; else if (DefRC != DstSubRC) return false; } RemoveCopyFlag(DstReg, CopyMI); // If copy kills the source register, find the last use and propagate // kill. bool checkForDeadDef = false; MachineBasicBlock *MBB = CopyMI->getParent(); if (SrcLR->end == CopyIdx.getDefIndex()) if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) { checkForDeadDef = true; } MachineBasicBlock::iterator MII = llvm::next(MachineBasicBlock::iterator(CopyMI)); tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_); MachineInstr *NewMI = prior(MII); if (checkForDeadDef) { // PR4090 fix: Trim interval failed because there was no use of the // source interval in this MBB. If the def is in this MBB too then we // should mark it dead: if (DefMI->getParent() == MBB) { DefMI->addRegisterDead(SrcInt.reg, tri_); SrcLR->end = SrcLR->start.getNextSlot(); } } // CopyMI may have implicit operands, transfer them over to the newly // rematerialized instruction. And update implicit def interval valnos. for (unsigned i = CopyMI->getDesc().getNumOperands(), e = CopyMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = CopyMI->getOperand(i); if (MO.isReg() && MO.isImplicit()) NewMI->addOperand(MO); if (MO.isDef()) RemoveCopyFlag(MO.getReg(), CopyMI); } TransferImplicitOps(CopyMI, NewMI); li_->ReplaceMachineInstrInMaps(CopyMI, NewMI); CopyMI->eraseFromParent(); ReMatCopies.insert(CopyMI); ReMatDefs.insert(DefMI); DEBUG(dbgs() << "Remat: " << *NewMI); ++NumReMats; return true; } /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and /// update the subregister number if it is not zero. If DstReg is a /// physical register and the existing subregister number of the def / use /// being updated is not zero, make sure to set it to the correct physical /// subregister. void SimpleRegisterCoalescing::UpdateRegDefsUses(const CoalescerPair &CP) { bool DstIsPhys = CP.isPhys(); unsigned SrcReg = CP.getSrcReg(); unsigned DstReg = CP.getDstReg(); unsigned SubIdx = CP.getSubIdx(); for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg); MachineInstr *UseMI = I.skipInstruction();) { // A PhysReg copy that won't be coalesced can perhaps be rematerialized // instead. if (DstIsPhys) { if (UseMI->isCopy() && !UseMI->getOperand(1).getSubReg() && !UseMI->getOperand(0).getSubReg() && UseMI->getOperand(1).getReg() == SrcReg && UseMI->getOperand(0).getReg() != SrcReg && UseMI->getOperand(0).getReg() != DstReg && !JoinedCopies.count(UseMI) && ReMaterializeTrivialDef(li_->getInterval(SrcReg), UseMI->getOperand(0).getReg(), 0, UseMI)) continue; } SmallVector Ops; bool Reads, Writes; tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); bool Kills = false, Deads = false; // Replace SrcReg with DstReg in all UseMI operands. for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = UseMI->getOperand(Ops[i]); Kills |= MO.isKill(); Deads |= MO.isDead(); if (DstIsPhys) MO.substPhysReg(DstReg, *tri_); else MO.substVirtReg(DstReg, SubIdx, *tri_); } // This instruction is a copy that will be removed. if (JoinedCopies.count(UseMI)) continue; if (SubIdx) { // If UseMI was a simple SrcReg def, make sure we didn't turn it into a // read-modify-write of DstReg. if (Deads) UseMI->addRegisterDead(DstReg, tri_); else if (!Reads && Writes) UseMI->addRegisterDefined(DstReg, tri_); // Kill flags apply to the whole physical register. if (DstIsPhys && Kills) UseMI->addRegisterKilled(DstReg, tri_); } DEBUG({ dbgs() << "\t\tupdated: "; if (!UseMI->isDebugValue()) dbgs() << li_->getInstructionIndex(UseMI) << "\t"; dbgs() << *UseMI; }); } } /// removeIntervalIfEmpty - Check if the live interval of a physical register /// is empty, if so remove it and also remove the empty intervals of its /// sub-registers. Return true if live interval is removed. static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_, const TargetRegisterInfo *tri_) { if (li.empty()) { if (TargetRegisterInfo::isPhysicalRegister(li.reg)) for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; LiveInterval &sli = li_->getInterval(*SR); if (sli.empty()) li_->removeInterval(*SR); } li_->removeInterval(li.reg); return true; } return false; } /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy. /// Return true if live interval is removed. bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li, MachineInstr *CopyMI) { SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI); LiveInterval::iterator MLR = li.FindLiveRangeContaining(CopyIdx.getDefIndex()); if (MLR == li.end()) return false; // Already removed by ShortenDeadCopySrcLiveRange. SlotIndex RemoveStart = MLR->start; SlotIndex RemoveEnd = MLR->end; SlotIndex DefIdx = CopyIdx.getDefIndex(); // Remove the liverange that's defined by this. if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) { removeRange(li, RemoveStart, RemoveEnd, li_, tri_); return removeIntervalIfEmpty(li, li_, tri_); } return false; } /// RemoveDeadDef - If a def of a live interval is now determined dead, remove /// the val# it defines. If the live interval becomes empty, remove it as well. bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI) { SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex(); LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx); if (DefIdx != MLR->valno->def) return false; li.removeValNo(MLR->valno); return removeIntervalIfEmpty(li, li_, tri_); } void SimpleRegisterCoalescing::RemoveCopyFlag(unsigned DstReg, const MachineInstr *CopyMI) { SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex(); if (li_->hasInterval(DstReg)) { LiveInterval &LI = li_->getInterval(DstReg); if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx)) if (LR->valno->getCopy() == CopyMI) LR->valno->setCopy(0); } if (!TargetRegisterInfo::isPhysicalRegister(DstReg)) return; for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) { if (!li_->hasInterval(*AS)) continue; LiveInterval &LI = li_->getInterval(*AS); if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx)) if (LR->valno->getCopy() == CopyMI) LR->valno->setCopy(0); } } /// PropagateDeadness - Propagate the dead marker to the instruction which /// defines the val#. static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI, SlotIndex &LRStart, LiveIntervals *li_, const TargetRegisterInfo* tri_) { MachineInstr *DefMI = li_->getInstructionFromIndex(LRStart.getDefIndex()); if (DefMI && DefMI != CopyMI) { int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg); if (DeadIdx != -1) DefMI->getOperand(DeadIdx).setIsDead(); else DefMI->addOperand(MachineOperand::CreateReg(li.reg, /*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true)); LRStart = LRStart.getNextSlot(); } } /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially /// extended by a dead copy. Mark the last use (if any) of the val# as kill as /// ends the live range there. If there isn't another use, then this live range /// is dead. Return true if live interval is removed. bool SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li, MachineInstr *CopyMI) { SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI); if (CopyIdx == SlotIndex()) { // FIXME: special case: function live in. It can be a general case if the // first instruction index starts at > 0 value. assert(TargetRegisterInfo::isPhysicalRegister(li.reg)); // Live-in to the function but dead. Remove it from entry live-in set. if (mf_->begin()->isLiveIn(li.reg)) mf_->begin()->removeLiveIn(li.reg); if (const LiveRange *LR = li.getLiveRangeContaining(CopyIdx)) removeRange(li, LR->start, LR->end, li_, tri_); return removeIntervalIfEmpty(li, li_, tri_); } LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex()); if (LR == li.end()) // Livein but defined by a phi. return false; SlotIndex RemoveStart = LR->start; SlotIndex RemoveEnd = CopyIdx.getStoreIndex(); if (LR->end > RemoveEnd) // More uses past this copy? Nothing to do. return false; // If there is a last use in the same bb, we can't remove the live range. // Shorten the live interval and return. MachineBasicBlock *CopyMBB = CopyMI->getParent(); if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR)) return false; // There are other kills of the val#. Nothing to do. if (!li.isOnlyLROfValNo(LR)) return false; MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart); if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_)) // If the live range starts in another mbb and the copy mbb is not a fall // through mbb, then we can only cut the range from the beginning of the // copy mbb. RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex(); if (LR->valno->def == RemoveStart) { // If the def MI defines the val# and this copy is the only kill of the // val#, then propagate the dead marker. PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_); ++numDeadValNo; } removeRange(li, RemoveStart, RemoveEnd, li_, tri_); return removeIntervalIfEmpty(li, li_, tri_); } /// isWinToJoinCrossClass - Return true if it's profitable to coalesce /// two virtual registers from different register classes. bool SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg, unsigned DstReg, const TargetRegisterClass *SrcRC, const TargetRegisterClass *DstRC, const TargetRegisterClass *NewRC) { unsigned NewRCCount = allocatableRCRegs_[NewRC].count(); // This heuristics is good enough in practice, but it's obviously not *right*. // 4 is a magic number that works well enough for x86, ARM, etc. It filter // out all but the most restrictive register classes. if (NewRCCount > 4 || // Early exit if the function is fairly small, coalesce aggressively if // that's the case. For really special register classes with 3 or // fewer registers, be a bit more careful. (li_->getFuncInstructionCount() / NewRCCount) < 8) return true; LiveInterval &SrcInt = li_->getInterval(SrcReg); LiveInterval &DstInt = li_->getInterval(DstReg); unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt); unsigned DstSize = li_->getApproximateInstructionCount(DstInt); if (SrcSize <= NewRCCount && DstSize <= NewRCCount) return true; // Estimate *register use density*. If it doubles or more, abort. unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg), mri_->use_nodbg_end()); unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg), mri_->use_nodbg_end()); unsigned NewUses = SrcUses + DstUses; unsigned NewSize = SrcSize + DstSize; if (SrcRC != NewRC && SrcSize > NewRCCount) { unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count(); if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount) return false; } if (DstRC != NewRC && DstSize > NewRCCount) { unsigned DstRCCount = allocatableRCRegs_[DstRC].count(); if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount) return false; } return true; } /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, /// which are the src/dst of the copy instruction CopyMI. This returns true /// if the copy was successfully coalesced away. If it is not currently /// possible to coalesce this interval, but it may be possible if other /// things get coalesced, then it returns true by reference in 'Again'. bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) { MachineInstr *CopyMI = TheCopy.MI; Again = false; if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI)) return false; // Already done. DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI); CoalescerPair CP(*tii_, *tri_); if (!CP.setRegisters(CopyMI)) { DEBUG(dbgs() << "\tNot coalescable.\n"); return false; } // If they are already joined we continue. if (CP.getSrcReg() == CP.getDstReg()) { DEBUG(dbgs() << "\tCopy already coalesced.\n"); return false; // Not coalescable. } if (DisablePhysicalJoin && CP.isPhys()) { DEBUG(dbgs() << "\tPhysical joins disabled.\n"); return false; } DEBUG(dbgs() << "\tConsidering merging %reg" << CP.getSrcReg()); // Enforce policies. if (CP.isPhys()) { DEBUG(dbgs() <<" with physreg %" << tri_->getName(CP.getDstReg()) << "\n"); // Only coalesce to allocatable physreg. if (!li_->isAllocatable(CP.getDstReg())) { DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n"); return false; // Not coalescable. } } else { DEBUG({ dbgs() << " with reg%" << CP.getDstReg(); if (CP.getSubIdx()) dbgs() << ":" << tri_->getSubRegIndexName(CP.getSubIdx()); dbgs() << " to " << CP.getNewRC()->getName() << "\n"; }); // Avoid constraining virtual register regclass too much. if (CP.isCrossClass()) { if (DisableCrossClassJoin) { DEBUG(dbgs() << "\tCross-class joins disabled.\n"); return false; } if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(), mri_->getRegClass(CP.getSrcReg()), mri_->getRegClass(CP.getDstReg()), CP.getNewRC())) { DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: " << CP.getNewRC()->getName() << ".\n"); Again = true; // May be possible to coalesce later. return false; } } // When possible, let DstReg be the larger interval. if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() > li_->getInterval(CP.getDstReg()).ranges.size()) CP.flip(); } // We need to be careful about coalescing a source physical register with a // virtual register. Once the coalescing is done, it cannot be broken and // these are not spillable! If the destination interval uses are far away, // think twice about coalescing them! // FIXME: Why are we skipping this test for partial copies? // CodeGen/X86/phys_subreg_coalesce-3.ll needs it. if (!CP.isPartial() && CP.isPhys()) { LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg()); // Don't join with physregs that have a ridiculous number of live // ranges. The data structure performance is really bad when that // happens. if (li_->hasInterval(CP.getDstReg()) && li_->getInterval(CP.getDstReg()).ranges.size() > 1000) { ++numAborts; DEBUG(dbgs() << "\tPhysical register live interval too complicated, abort!\n"); return false; } const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg()); unsigned Threshold = allocatableRCRegs_[RC].count() * 2; unsigned Length = li_->getApproximateInstructionCount(JoinVInt); if (Length > Threshold && std::distance(mri_->use_nodbg_begin(CP.getSrcReg()), mri_->use_nodbg_end()) * Threshold < Length) { // Before giving up coalescing, if definition of source is defined by // trivial computation, try rematerializing it. if (!CP.isFlipped() && ReMaterializeTrivialDef(JoinVInt, CP.getDstReg(), 0, CopyMI)) return true; ++numAborts; DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n"); Again = true; // May be possible to coalesce later. return false; } } // Okay, attempt to join these two intervals. On failure, this returns false. // Otherwise, if one of the intervals being joined is a physreg, this method // always canonicalizes DstInt to be it. The output "SrcInt" will not have // been modified, so we can use this information below to update aliases. if (!JoinIntervals(CP)) { // Coalescing failed. // If definition of source is defined by trivial computation, try // rematerializing it. if (!CP.isFlipped() && ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), CP.getDstReg(), 0, CopyMI)) return true; // If we can eliminate the copy without merging the live ranges, do so now. if (!CP.isPartial()) { if (AdjustCopiesBackFrom(CP, CopyMI) || RemoveCopyByCommutingDef(CP, CopyMI)) { JoinedCopies.insert(CopyMI); DEBUG(dbgs() << "\tTrivial!\n"); return true; } } // Otherwise, we are unable to join the intervals. DEBUG(dbgs() << "\tInterference!\n"); Again = true; // May be possible to coalesce later. return false; } // Coalescing to a virtual register that is of a sub-register class of the // other. Make sure the resulting register is set to the right register class. if (CP.isCrossClass()) { ++numCrossRCs; mri_->setRegClass(CP.getDstReg(), CP.getNewRC()); } // Remember to delete the copy instruction. JoinedCopies.insert(CopyMI); UpdateRegDefsUses(CP); // If we have extended the live range of a physical register, make sure we // update live-in lists as well. if (CP.isPhys()) { SmallVector BlockSeq; // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the // ranges for this, and they are preserved. LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg()); for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end(); I != E; ++I ) { li_->findLiveInMBBs(I->start, I->end, BlockSeq); for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) { MachineBasicBlock &block = *BlockSeq[idx]; if (!block.isLiveIn(CP.getDstReg())) block.addLiveIn(CP.getDstReg()); } BlockSeq.clear(); } } // SrcReg is guarateed to be the register whose live interval that is // being merged. li_->removeInterval(CP.getSrcReg()); // Update regalloc hint. tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_); DEBUG({ LiveInterval &DstInt = li_->getInterval(CP.getDstReg()); dbgs() << "\tJoined. Result = "; DstInt.print(dbgs(), tri_); dbgs() << "\n"; }); ++numJoins; return true; } /// ComputeUltimateVN - Assuming we are going to join two live intervals, /// compute what the resultant value numbers for each value in the input two /// ranges will be. This is complicated by copies between the two which can /// and will commonly cause multiple value numbers to be merged into one. /// /// VN is the value number that we're trying to resolve. InstDefiningValue /// keeps track of the new InstDefiningValue assignment for the result /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of /// whether a value in this or other is a copy from the opposite set. /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have /// already been assigned. /// /// ThisFromOther[x] - If x is defined as a copy from the other interval, this /// contains the value number the copy is from. /// static unsigned ComputeUltimateVN(VNInfo *VNI, SmallVector &NewVNInfo, DenseMap &ThisFromOther, DenseMap &OtherFromThis, SmallVector &ThisValNoAssignments, SmallVector &OtherValNoAssignments) { unsigned VN = VNI->id; // If the VN has already been computed, just return it. if (ThisValNoAssignments[VN] >= 0) return ThisValNoAssignments[VN]; assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers"); // If this val is not a copy from the other val, then it must be a new value // number in the destination. DenseMap::iterator I = ThisFromOther.find(VNI); if (I == ThisFromOther.end()) { NewVNInfo.push_back(VNI); return ThisValNoAssignments[VN] = NewVNInfo.size()-1; } VNInfo *OtherValNo = I->second; // Otherwise, this *is* a copy from the RHS. If the other side has already // been computed, return it. if (OtherValNoAssignments[OtherValNo->id] >= 0) return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id]; // Mark this value number as currently being computed, then ask what the // ultimate value # of the other value is. ThisValNoAssignments[VN] = -2; unsigned UltimateVN = ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther, OtherValNoAssignments, ThisValNoAssignments); return ThisValNoAssignments[VN] = UltimateVN; } /// JoinIntervals - Attempt to join these two intervals. On failure, this /// returns false. bool SimpleRegisterCoalescing::JoinIntervals(CoalescerPair &CP) { LiveInterval &RHS = li_->getInterval(CP.getSrcReg()); DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; }); // If a live interval is a physical register, check for interference with any // aliases. The interference check implemented here is a bit more conservative // than the full interfeence check below. We allow overlapping live ranges // only when one is a copy of the other. if (CP.isPhys()) { for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){ if (!li_->hasInterval(*AS)) continue; const LiveInterval &LHS = li_->getInterval(*AS); LiveInterval::const_iterator LI = LHS.begin(); for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end(); RI != RE; ++RI) { LI = std::lower_bound(LI, LHS.end(), RI->start); // Does LHS have an overlapping live range starting before RI? if ((LI != LHS.begin() && LI[-1].end > RI->start) && (RI->start != RI->valno->def || !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) { DEBUG({ dbgs() << "\t\tInterference from alias: "; LHS.print(dbgs(), tri_); dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n"; }); return false; } // Check that LHS ranges beginning in this range are copies. for (; LI != LHS.end() && LI->start < RI->end; ++LI) { if (LI->start != LI->valno->def || !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) { DEBUG({ dbgs() << "\t\tInterference from alias: "; LHS.print(dbgs(), tri_); dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n"; }); return false; } } } } } // Compute the final value assignment, assuming that the live ranges can be // coalesced. SmallVector LHSValNoAssignments; SmallVector RHSValNoAssignments; DenseMap LHSValsDefinedFromRHS; DenseMap RHSValsDefinedFromLHS; SmallVector NewVNInfo; LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg()); DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; }); // Loop over the value numbers of the LHS, seeing if any are defined from // the RHS. for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy? continue; // Never join with a register that has EarlyClobber redefs. if (VNI->hasRedefByEC()) return false; // DstReg is known to be a register in the LHS interval. If the src is // from the RHS interval, we can use its value #. if (!CP.isCoalescable(VNI->getCopy())) continue; // Figure out the value # from the RHS. LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot()); // The copy could be to an aliased physreg. if (!lr) continue; LHSValsDefinedFromRHS[VNI] = lr->valno; } // Loop over the value numbers of the RHS, seeing if any are defined from // the LHS. for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy? continue; // Never join with a register that has EarlyClobber redefs. if (VNI->hasRedefByEC()) return false; // DstReg is known to be a register in the RHS interval. If the src is // from the LHS interval, we can use its value #. if (!CP.isCoalescable(VNI->getCopy())) continue; // Figure out the value # from the LHS. LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot()); // The copy could be to an aliased physreg. if (!lr) continue; RHSValsDefinedFromLHS[VNI] = lr->valno; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused()) continue; ComputeUltimateVN(VNI, NewVNInfo, LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, LHSValNoAssignments, RHSValNoAssignments); } for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused()) continue; // If this value number isn't a copy from the LHS, it's a new number. if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) { NewVNInfo.push_back(VNI); RHSValNoAssignments[VN] = NewVNInfo.size()-1; continue; } ComputeUltimateVN(VNI, NewVNInfo, RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, RHSValNoAssignments, LHSValNoAssignments); } // Armed with the mappings of LHS/RHS values to ultimate values, walk the // interval lists to see if these intervals are coalescable. LiveInterval::const_iterator I = LHS.begin(); LiveInterval::const_iterator IE = LHS.end(); LiveInterval::const_iterator J = RHS.begin(); LiveInterval::const_iterator JE = RHS.end(); // Skip ahead until the first place of potential sharing. if (I != IE && J != JE) { if (I->start < J->start) { I = std::upper_bound(I, IE, J->start); if (I != LHS.begin()) --I; } else if (J->start < I->start) { J = std::upper_bound(J, JE, I->start); if (J != RHS.begin()) --J; } } while (I != IE && J != JE) { // Determine if these two live ranges overlap. bool Overlaps; if (I->start < J->start) { Overlaps = I->end > J->start; } else { Overlaps = J->end > I->start; } // If so, check value # info to determine if they are really different. if (Overlaps) { // If the live range overlap will map to the same value number in the // result liverange, we can still coalesce them. If not, we can't. if (LHSValNoAssignments[I->valno->id] != RHSValNoAssignments[J->valno->id]) return false; // If it's re-defined by an early clobber somewhere in the live range, // then conservatively abort coalescing. if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC()) return false; } if (I->end < J->end) ++I; else ++J; } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = LHSValsDefinedFromRHS.begin(), E = LHSValsDefinedFromRHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned LHSValID = LHSValNoAssignments[VNI->id]; if (VNI->hasPHIKill()) NewVNInfo[LHSValID]->setHasPHIKill(true); } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = RHSValsDefinedFromLHS.begin(), E = RHSValsDefinedFromLHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned RHSValID = RHSValNoAssignments[VNI->id]; if (VNI->hasPHIKill()) NewVNInfo[RHSValID]->setHasPHIKill(true); } if (LHSValNoAssignments.empty()) LHSValNoAssignments.push_back(-1); if (RHSValNoAssignments.empty()) RHSValNoAssignments.push_back(-1); // If we get here, we know that we can coalesce the live ranges. Ask the // intervals to coalesce themselves now. LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo, mri_); return true; } namespace { // DepthMBBCompare - Comparison predicate that sort first based on the loop // depth of the basic block (the unsigned), and then on the MBB number. struct DepthMBBCompare { typedef std::pair DepthMBBPair; bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { // Deeper loops first if (LHS.first != RHS.first) return LHS.first > RHS.first; // Prefer blocks that are more connected in the CFG. This takes care of // the most difficult copies first while intervals are short. unsigned cl = LHS.second->pred_size() + LHS.second->succ_size(); unsigned cr = RHS.second->pred_size() + RHS.second->succ_size(); if (cl != cr) return cl > cr; // As a last resort, sort by block number. return LHS.second->getNumber() < RHS.second->getNumber(); } }; } void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB, std::vector &TryAgain) { DEBUG(dbgs() << MBB->getName() << ":\n"); std::vector VirtCopies; std::vector PhysCopies; std::vector ImpDefCopies; for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E;) { MachineInstr *Inst = MII++; // If this isn't a copy nor a extract_subreg, we can't join intervals. unsigned SrcReg, DstReg; if (Inst->isCopy()) { DstReg = Inst->getOperand(0).getReg(); SrcReg = Inst->getOperand(1).getReg(); } else if (Inst->isSubregToReg()) { DstReg = Inst->getOperand(0).getReg(); SrcReg = Inst->getOperand(2).getReg(); } else continue; bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty()) ImpDefCopies.push_back(CopyRec(Inst, 0)); else if (SrcIsPhys || DstIsPhys) PhysCopies.push_back(CopyRec(Inst, 0)); else VirtCopies.push_back(CopyRec(Inst, 0)); } // Try coalescing implicit copies and insert_subreg first, // followed by copies to / from physical registers, then finally copies // from virtual registers to virtual registers. for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) { CopyRec &TheCopy = ImpDefCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) { CopyRec &TheCopy = PhysCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) { CopyRec &TheCopy = VirtCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } } void SimpleRegisterCoalescing::joinIntervals() { DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); std::vector TryAgainList; if (loopInfo->empty()) { // If there are no loops in the function, join intervals in function order. for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) CopyCoalesceInMBB(I, TryAgainList); } else { // Otherwise, join intervals in inner loops before other intervals. // Unfortunately we can't just iterate over loop hierarchy here because // there may be more MBB's than BB's. Collect MBB's for sorting. // Join intervals in the function prolog first. We want to join physical // registers with virtual registers before the intervals got too long. std::vector > MBBs; for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){ MachineBasicBlock *MBB = I; MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I)); } // Sort by loop depth. std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); // Finally, join intervals in loop nest order. for (unsigned i = 0, e = MBBs.size(); i != e; ++i) CopyCoalesceInMBB(MBBs[i].second, TryAgainList); } // Joining intervals can allow other intervals to be joined. Iteratively join // until we make no progress. bool ProgressMade = true; while (ProgressMade) { ProgressMade = false; for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { CopyRec &TheCopy = TryAgainList[i]; if (!TheCopy.MI) continue; bool Again = false; bool Success = JoinCopy(TheCopy, Again); if (Success || !Again) { TheCopy.MI = 0; // Mark this one as done. ProgressMade = true; } } } } /// Return true if the two specified registers belong to different register /// classes. The registers may be either phys or virt regs. bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA, unsigned RegB) const { // Get the register classes for the first reg. if (TargetRegisterInfo::isPhysicalRegister(RegA)) { assert(TargetRegisterInfo::isVirtualRegister(RegB) && "Shouldn't consider two physregs!"); return !mri_->getRegClass(RegB)->contains(RegA); } // Compare against the regclass for the second reg. const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA); if (TargetRegisterInfo::isVirtualRegister(RegB)) { const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB); return RegClassA != RegClassB; } return !RegClassA->contains(RegB); } /// lastRegisterUse - Returns the last (non-debug) use of the specific register /// between cycles Start and End or NULL if there are no uses. MachineOperand * SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start, SlotIndex End, unsigned Reg, SlotIndex &UseIdx) const{ UseIdx = SlotIndex(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { MachineOperand *LastUse = NULL; for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg), E = mri_->use_nodbg_end(); I != E; ++I) { MachineOperand &Use = I.getOperand(); MachineInstr *UseMI = Use.getParent(); if (UseMI->isIdentityCopy()) continue; SlotIndex Idx = li_->getInstructionIndex(UseMI); // FIXME: Should this be Idx != UseIdx? SlotIndex() will return something // that compares higher than any other interval. if (Idx >= Start && Idx < End && Idx >= UseIdx) { LastUse = &Use; UseIdx = Idx.getUseIndex(); } } return LastUse; } SlotIndex s = Start; SlotIndex e = End.getPrevSlot().getBaseIndex(); while (e >= s) { // Skip deleted instructions MachineInstr *MI = li_->getInstructionFromIndex(e); while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) { e = e.getPrevIndex(); MI = li_->getInstructionFromIndex(e); } if (e < s || MI == NULL) return NULL; // Ignore identity copies. if (!MI->isIdentityCopy()) for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { MachineOperand &Use = MI->getOperand(i); if (Use.isReg() && Use.isUse() && Use.getReg() && tri_->regsOverlap(Use.getReg(), Reg)) { UseIdx = e.getUseIndex(); return &Use; } } e = e.getPrevIndex(); } return NULL; } void SimpleRegisterCoalescing::releaseMemory() { JoinedCopies.clear(); ReMatCopies.clear(); ReMatDefs.clear(); } bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; mri_ = &fn.getRegInfo(); tm_ = &fn.getTarget(); tri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); li_ = &getAnalysis(); AA = &getAnalysis(); loopInfo = &getAnalysis(); DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'); for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(), E = tri_->regclass_end(); I != E; ++I) allocatableRCRegs_.insert(std::make_pair(*I, tri_->getAllocatableSet(fn, *I))); // Join (coalesce) intervals if requested. if (EnableJoining) { joinIntervals(); DEBUG({ dbgs() << "********** INTERVALS POST JOINING **********\n"; for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){ I->second->print(dbgs(), tri_); dbgs() << "\n"; } }); } // Perform a final pass over the instructions and compute spill weights // and remove identity moves. SmallVector DeadDefs; for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); mii != mie; ) { MachineInstr *MI = mii; if (JoinedCopies.count(MI)) { // Delete all coalesced copies. bool DoDelete = true; assert(MI->isCopyLike() && "Unrecognized copy instruction"); unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg(); if (TargetRegisterInfo::isPhysicalRegister(SrcReg) && MI->getNumOperands() > 2) // Do not delete extract_subreg, insert_subreg of physical // registers unless the definition is dead. e.g. // %DO = INSERT_SUBREG %D0, %S0, 1 // or else the scavenger may complain. LowerSubregs will // delete them later. DoDelete = false; if (MI->allDefsAreDead()) { LiveInterval &li = li_->getInterval(SrcReg); if (!ShortenDeadCopySrcLiveRange(li, MI)) ShortenDeadCopyLiveRange(li, MI); DoDelete = true; } if (!DoDelete) { // We need the instruction to adjust liveness, so make it a KILL. if (MI->isSubregToReg()) { MI->RemoveOperand(3); MI->RemoveOperand(1); } MI->setDesc(tii_->get(TargetOpcode::KILL)); mii = llvm::next(mii); } else { li_->RemoveMachineInstrFromMaps(MI); mii = mbbi->erase(mii); ++numPeep; } continue; } // Now check if this is a remat'ed def instruction which is now dead. if (ReMatDefs.count(MI)) { bool isDead = true; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) DeadDefs.push_back(Reg); if (MO.isDead()) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg) || !mri_->use_nodbg_empty(Reg)) { isDead = false; break; } } if (isDead) { while (!DeadDefs.empty()) { unsigned DeadDef = DeadDefs.back(); DeadDefs.pop_back(); RemoveDeadDef(li_->getInterval(DeadDef), MI); } li_->RemoveMachineInstrFromMaps(mii); mii = mbbi->erase(mii); continue; } else DeadDefs.clear(); } // If the move will be an identity move delete it if (MI->isIdentityCopy()) { unsigned SrcReg = MI->getOperand(1).getReg(); if (li_->hasInterval(SrcReg)) { LiveInterval &RegInt = li_->getInterval(SrcReg); // If def of this move instruction is dead, remove its live range // from the destination register's live interval. if (MI->allDefsAreDead()) { if (!ShortenDeadCopySrcLiveRange(RegInt, MI)) ShortenDeadCopyLiveRange(RegInt, MI); } } li_->RemoveMachineInstrFromMaps(MI); mii = mbbi->erase(mii); ++numPeep; continue; } ++mii; // Check for now unnecessary kill flags. if (li_->isNotInMIMap(MI)) continue; SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isKill()) continue; unsigned reg = MO.getReg(); if (!reg || !li_->hasInterval(reg)) continue; if (!li_->getInterval(reg).killedAt(DefIdx)) MO.setIsKill(false); } } } DEBUG(dump()); return true; } /// print - Implement the dump method. void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const { li_->print(O, m); } RegisterCoalescer* llvm::createSimpleRegisterCoalescer() { return new SimpleRegisterCoalescing(); } // Make sure that anything that uses RegisterCoalescer pulls in this file... DEFINING_FILE_FOR(SimpleRegisterCoalescing)