//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple register coalescing pass that attempts to // aggressively coalesce every register copy that it can. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regcoalescing" #include "SimpleRegisterCoalescing.h" #include "VirtRegMap.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/Value.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; STATISTIC(numJoins , "Number of interval joins performed"); STATISTIC(numCrossRCs , "Number of cross class joins performed"); STATISTIC(numCommutes , "Number of instruction commuting performed"); STATISTIC(numExtends , "Number of copies extended"); STATISTIC(NumReMats , "Number of instructions re-materialized"); STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); STATISTIC(numAborts , "Number of times interval joining aborted"); STATISTIC(numDeadValNo, "Number of valno def marked dead"); char SimpleRegisterCoalescing::ID = 0; static cl::opt EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true)); static cl::opt DisableCrossClassJoin("disable-cross-class-join", cl::desc("Avoid coalescing cross register class copies"), cl::init(false), cl::Hidden); static RegisterPass X("simple-register-coalescing", "Simple Register Coalescing"); // Declare that we implement the RegisterCoalescer interface static RegisterAnalysisGroup V(X); const PassInfo *const llvm::SimpleRegisterCoalescingID = &X; void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); if (StrongPHIElim) AU.addPreservedID(StrongPHIEliminationID); else AU.addPreservedID(PHIEliminationID); AU.addPreservedID(TwoAddressInstructionPassID); MachineFunctionPass::getAnalysisUsage(AU); } /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA /// being the source and IntB being the dest, thus this defines a value number /// in IntB. If the source value number (in IntA) is defined by a copy from B, /// see if we can merge these two pieces of B into a single value number, /// eliminating a copy. For example: /// /// A3 = B0 /// ... /// B1 = A3 <- this copy /// /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 /// value number to be replaced with B0 (which simplifies the B liveinterval). /// /// This returns true if an interval was modified. /// bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB, MachineInstr *CopyMI) { SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex(); // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); assert(BLR != IntB.end() && "Live range not found!"); VNInfo *BValNo = BLR->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (!BValNo->getCopy()) return false; assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A3 in the example. SlotIndex CopyUseIdx = CopyIdx.getUseIndex(); LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx); assert(ALR != IntA.end() && "Live range not found!"); VNInfo *AValNo = ALR->valno; // If it's re-defined by an early clobber somewhere in the live range, then // it's not safe to eliminate the copy. FIXME: This is a temporary workaround. // See PR3149: // 172 %ECX = MOV32rr %reg1039 // 180 INLINEASM , 10, %EAX, 14, %ECX, 9, // %EAX, // 36, , 1, %reg0, 0, 9, %ECX, 36, , 1, %reg0, 0 // 188 %EAX = MOV32rr %EAX // 196 %ECX = MOV32rr %ECX // 204 %ECX = MOV32rr %ECX // 212 %EAX = MOV32rr %EAX // 220 %EAX = MOV32rr %EAX // 228 %reg1039 = MOV32rr %ECX // The early clobber operand ties ECX input to the ECX def. // // The live interval of ECX is represented as this: // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47) // The coalescer has no idea there was a def in the middle of [174,230]. if (AValNo->hasRedefByEC()) return false; // If AValNo is defined as a copy from IntB, we can potentially process this. // Get the instruction that defines this value number. unsigned SrcReg = li_->getVNInfoSourceReg(AValNo); if (!SrcReg) return false; // Not defined by a copy. // If the value number is not defined by a copy instruction, ignore it. // If the source register comes from an interval other than IntB, we can't // handle this. if (SrcReg != IntB.reg) return false; // Get the LiveRange in IntB that this value number starts with. LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot()); assert(ValLR != IntB.end() && "Live range not found!"); // Make sure that the end of the live range is inside the same block as // CopyMI. MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end.getPrevSlot()); if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent()) return false; // Okay, we now know that ValLR ends in the same block that the CopyMI // live-range starts. If there are no intervening live ranges between them in // IntB, we can merge them. if (ValLR+1 != BLR) return false; // If a live interval is a physical register, conservatively check if any // of its sub-registers is overlapping the live interval of the virtual // register. If so, do not coalesce. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) && *tri_->getSubRegisters(IntB.reg)) { for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) { DEBUG({ dbgs() << "\t\tInterfere with sub-register "; li_->getInterval(*SR).print(dbgs(), tri_); }); return false; } } DEBUG({ dbgs() << "Extending: "; IntB.print(dbgs(), tri_); }); SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start; // We are about to delete CopyMI, so need to remove it as the 'instruction // that defines this value #'. Update the valnum with the new defining // instruction #. BValNo->def = FillerStart; BValNo->setCopy(0); // Okay, we can merge them. We need to insert a new liverange: // [ValLR.end, BLR.begin) of either value number, then we merge the // two value numbers. IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); // If the IntB live range is assigned to a physical register, and if that // physreg has sub-registers, update their live intervals as well. if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) { for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) { LiveInterval &SRLI = li_->getInterval(*SR); SRLI.addRange(LiveRange(FillerStart, FillerEnd, SRLI.getNextValue(FillerStart, 0, true, li_->getVNInfoAllocator()))); } } // Okay, merge "B1" into the same value number as "B0". if (BValNo != ValLR->valno) { IntB.addKills(ValLR->valno, BValNo->kills); IntB.MergeValueNumberInto(BValNo, ValLR->valno); } DEBUG({ dbgs() << " result = "; IntB.print(dbgs(), tri_); dbgs() << "\n"; }); // If the source instruction was killing the source register before the // merge, unset the isKill marker given the live range has been extended. int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); if (UIdx != -1) { ValLREndInst->getOperand(UIdx).setIsKill(false); ValLR->valno->removeKill(FillerStart); } // If the copy instruction was killing the destination register before the // merge, find the last use and trim the live range. That will also add the // isKill marker. if (ALR->valno->isKill(CopyIdx)) TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR); ++numExtends; return true; } /// HasOtherReachingDefs - Return true if there are definitions of IntB /// other than BValNo val# that can reach uses of AValno val# of IntA. bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, VNInfo *AValNo, VNInfo *BValNo) { for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); AI != AE; ++AI) { if (AI->valno != AValNo) continue; LiveInterval::Ranges::iterator BI = std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start); if (BI != IntB.ranges.begin()) --BI; for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) { if (BI->valno == BValNo) continue; // When BValNo is null, we're looking for a dummy clobber-value for a subreg. if (!BValNo && !BI->valno->isDefAccurate() && !BI->valno->getCopy()) continue; if (BI->start <= AI->start && BI->end > AI->start) return true; if (BI->start > AI->start && BI->start < AI->end) return true; } } return false; } static void TransferImplicitOps(MachineInstr *MI, MachineInstr *NewMI) { for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isImplicit()) NewMI->addOperand(MO); } } /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with /// IntA being the source and IntB being the dest, thus this defines a value /// number in IntB. If the source value number (in IntA) is defined by a /// commutable instruction and its other operand is coalesced to the copy dest /// register, see if we can transform the copy into a noop by commuting the /// definition. For example, /// /// A3 = op A2 B0 /// ... /// B1 = A3 <- this copy /// ... /// = op A3 <- more uses /// /// ==> /// /// B2 = op B0 A2 /// ... /// B1 = B2 <- now an identify copy /// ... /// = op B2 <- more uses /// /// This returns true if an interval was modified. /// bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA, LiveInterval &IntB, MachineInstr *CopyMI) { SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex(); // FIXME: For now, only eliminate the copy by commuting its def when the // source register is a virtual register. We want to guard against cases // where the copy is a back edge copy and commuting the def lengthen the // live interval of the source register to the entire loop. if (TargetRegisterInfo::isPhysicalRegister(IntA.reg)) return false; // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); assert(BLR != IntB.end() && "Live range not found!"); VNInfo *BValNo = BLR->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (!BValNo->getCopy()) return false; assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A3 in the example. LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx.getUseIndex()); // assert(ALR != IntA.end() && "Live range not found!"); VNInfo *AValNo = ALR->valno; // If other defs can reach uses of this def, then it's not safe to perform // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be // tested? if (AValNo->isPHIDef() || !AValNo->isDefAccurate() || AValNo->isUnused() || AValNo->hasPHIKill()) return false; MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def); const TargetInstrDesc &TID = DefMI->getDesc(); if (!TID.isCommutable()) return false; // If DefMI is a two-address instruction then commuting it will change the // destination register. int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); assert(DefIdx != -1); unsigned UseOpIdx; if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) return false; unsigned Op1, Op2, NewDstIdx; if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2)) return false; if (Op1 == UseOpIdx) NewDstIdx = Op2; else if (Op2 == UseOpIdx) NewDstIdx = Op1; else return false; MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); unsigned NewReg = NewDstMO.getReg(); if (NewReg != IntB.reg || !NewDstMO.isKill()) return false; // Make sure there are no other definitions of IntB that would reach the // uses which the new definition can reach. if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) return false; bool BHasSubRegs = false; if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) BHasSubRegs = *tri_->getSubRegisters(IntB.reg); // Abort if the subregisters of IntB.reg have values that are not simply the // clobbers from the superreg. if (BHasSubRegs) for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) if (HasOtherReachingDefs(IntA, li_->getInterval(*SR), AValNo, 0)) return false; // If some of the uses of IntA.reg is already coalesced away, return false. // It's not possible to determine whether it's safe to perform the coalescing. for (MachineRegisterInfo::use_nodbg_iterator UI = mri_->use_nodbg_begin(IntA.reg), UE = mri_->use_nodbg_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; SlotIndex UseIdx = li_->getInstructionIndex(UseMI); LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); if (ULR == IntA.end()) continue; if (ULR->valno == AValNo && JoinedCopies.count(UseMI)) return false; } // At this point we have decided that it is legal to do this // transformation. Start by commuting the instruction. MachineBasicBlock *MBB = DefMI->getParent(); MachineInstr *NewMI = tii_->commuteInstruction(DefMI); if (!NewMI) return false; if (NewMI != DefMI) { li_->ReplaceMachineInstrInMaps(DefMI, NewMI); MBB->insert(DefMI, NewMI); MBB->erase(DefMI); } unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false); NewMI->getOperand(OpIdx).setIsKill(); bool BHasPHIKill = BValNo->hasPHIKill(); SmallVector BDeadValNos; VNInfo::KillSet BKills; std::map BExtend; // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. // A = or A, B // ... // B = A // ... // C = A // ... // = B // // then do not add kills of A to the newly created B interval. bool Extended = BLR->end > ALR->end && ALR->end != ALR->start; if (Extended) BExtend[ALR->end] = BLR->end; // Update uses of IntA of the specific Val# with IntB. for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg), UE = mri_->use_end(); UI != UE;) { MachineOperand &UseMO = UI.getOperand(); MachineInstr *UseMI = &*UI; ++UI; if (JoinedCopies.count(UseMI)) continue; if (UseMI->isDebugValue()) { // FIXME These don't have an instruction index. Not clear we have enough // info to decide whether to do this replacement or not. For now do it. UseMO.setReg(NewReg); continue; } SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex(); LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); if (ULR == IntA.end() || ULR->valno != AValNo) continue; UseMO.setReg(NewReg); if (UseMI == CopyMI) continue; if (UseMO.isKill()) { if (Extended) UseMO.setIsKill(false); else BKills.push_back(UseIdx.getDefIndex()); } unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) continue; if (DstReg == IntB.reg && DstSubIdx == 0) { // This copy will become a noop. If it's defining a new val#, // remove that val# as well. However this live range is being // extended to the end of the existing live range defined by the copy. SlotIndex DefIdx = UseIdx.getDefIndex(); const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx); BHasPHIKill |= DLR->valno->hasPHIKill(); assert(DLR->valno->def == DefIdx); BDeadValNos.push_back(DLR->valno); BExtend[DLR->start] = DLR->end; JoinedCopies.insert(UseMI); // If this is a kill but it's going to be removed, the last use // of the same val# is the new kill. if (UseMO.isKill()) BKills.pop_back(); } } // We need to insert a new liverange: [ALR.start, LastUse). It may be we can // simply extend BLR if CopyMI doesn't end the range. DEBUG({ dbgs() << "Extending: "; IntB.print(dbgs(), tri_); }); // Remove val#'s defined by copies that will be coalesced away. for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) { VNInfo *DeadVNI = BDeadValNos[i]; if (BHasSubRegs) { for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) { LiveInterval &SRLI = li_->getInterval(*SR); const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def); SRLI.removeValNo(SRLR->valno); } } IntB.removeValNo(BDeadValNos[i]); } // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition // is updated. Kills are also updated. VNInfo *ValNo = BValNo; ValNo->def = AValNo->def; ValNo->setCopy(0); for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) { if (ValNo->kills[j] != BLR->end) BKills.push_back(ValNo->kills[j]); } ValNo->kills.clear(); for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); AI != AE; ++AI) { if (AI->valno != AValNo) continue; SlotIndex End = AI->end; std::map::iterator EI = BExtend.find(End); if (EI != BExtend.end()) End = EI->second; IntB.addRange(LiveRange(AI->start, End, ValNo)); // If the IntB live range is assigned to a physical register, and if that // physreg has sub-registers, update their live intervals as well. if (BHasSubRegs) { for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) { LiveInterval &SRLI = li_->getInterval(*SR); SRLI.MergeInClobberRange(*li_, AI->start, End, li_->getVNInfoAllocator()); } } } IntB.addKills(ValNo, BKills); ValNo->setHasPHIKill(BHasPHIKill); DEBUG({ dbgs() << " result = "; IntB.print(dbgs(), tri_); dbgs() << "\nShortening: "; IntA.print(dbgs(), tri_); }); IntA.removeValNo(AValNo); DEBUG({ dbgs() << " result = "; IntA.print(dbgs(), tri_); dbgs() << '\n'; }); ++numCommutes; return true; } /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply /// fallthoughs to SuccMBB. static bool isSameOrFallThroughBB(MachineBasicBlock *MBB, MachineBasicBlock *SuccMBB, const TargetInstrInfo *tii_) { if (MBB == SuccMBB) return true; MachineBasicBlock *TBB = 0, *FBB = 0; SmallVector Cond; return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB && MBB->isSuccessor(SuccMBB); } /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range /// from a physical register live interval as well as from the live intervals /// of its sub-registers. static void removeRange(LiveInterval &li, SlotIndex Start, SlotIndex End, LiveIntervals *li_, const TargetRegisterInfo *tri_) { li.removeRange(Start, End, true); if (TargetRegisterInfo::isPhysicalRegister(li.reg)) { for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; LiveInterval &sli = li_->getInterval(*SR); SlotIndex RemoveStart = Start; SlotIndex RemoveEnd = Start; while (RemoveEnd != End) { LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart); if (LR == sli.end()) break; RemoveEnd = (LR->end < End) ? LR->end : End; sli.removeRange(RemoveStart, RemoveEnd, true); RemoveStart = RemoveEnd; } } } } /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block /// as the copy instruction, trim the live interval to the last use and return /// true. bool SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx, MachineBasicBlock *CopyMBB, LiveInterval &li, const LiveRange *LR) { SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB); SlotIndex LastUseIdx; MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx); if (LastUse) { MachineInstr *LastUseMI = LastUse->getParent(); if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) { // r1024 = op // ... // BB1: // = r1024 // // BB2: // r1025 = r1024 if (MBBStart < LR->end) removeRange(li, MBBStart, LR->end, li_, tri_); return true; } // There are uses before the copy, just shorten the live range to the end // of last use. LastUse->setIsKill(); removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_); LR->valno->addKill(LastUseIdx.getDefIndex()); unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) && DstReg == li.reg && DstSubIdx == 0) { // Last use is itself an identity code. int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, false, tri_); LastUseMI->getOperand(DeadIdx).setIsDead(); } return true; } // Is it livein? if (LR->start <= MBBStart && LR->end > MBBStart) { if (LR->start == li_->getZeroIndex()) { assert(TargetRegisterInfo::isPhysicalRegister(li.reg)); // Live-in to the function but dead. Remove it from entry live-in set. mf_->begin()->removeLiveIn(li.reg); } // FIXME: Shorten intervals in BBs that reaches this BB. } return false; } /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial /// computation, replace the copy by rematerialize the definition. bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg, unsigned DstSubIdx, MachineInstr *CopyMI) { SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex(); LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx); assert(SrcLR != SrcInt.end() && "Live range not found!"); VNInfo *ValNo = SrcLR->valno; // If other defs can reach uses of this def, then it's not safe to perform // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be // tested? if (ValNo->isPHIDef() || !ValNo->isDefAccurate() || ValNo->isUnused() || ValNo->hasPHIKill()) return false; MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def); const TargetInstrDesc &TID = DefMI->getDesc(); if (!TID.isAsCheapAsAMove()) return false; if (!tii_->isTriviallyReMaterializable(DefMI, AA)) return false; bool SawStore = false; if (!DefMI->isSafeToMove(tii_, AA, SawStore)) return false; if (TID.getNumDefs() != 1) return false; if (!DefMI->isImplicitDef()) { // Make sure the copy destination register class fits the instruction // definition register class. The mismatch can happen as a result of earlier // extract_subreg, insert_subreg, subreg_to_reg coalescing. const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_); if (TargetRegisterInfo::isVirtualRegister(DstReg)) { if (mri_->getRegClass(DstReg) != RC) return false; } else if (!RC->contains(DstReg)) return false; } // If destination register has a sub-register index on it, make sure it mtches // the instruction register class. if (DstSubIdx) { const TargetInstrDesc &TID = DefMI->getDesc(); if (TID.getNumDefs() != 1) return false; const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg); const TargetRegisterClass *DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx); const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_); if (DefRC == DstRC) DstSubIdx = 0; else if (DefRC != DstSubRC) return false; } SlotIndex DefIdx = CopyIdx.getDefIndex(); const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx); DLR->valno->setCopy(0); // Don't forget to update sub-register intervals. if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; const LiveRange *DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx); if (DLR && DLR->valno->getCopy() == CopyMI) DLR->valno->setCopy(0); } } // If copy kills the source register, find the last use and propagate // kill. bool checkForDeadDef = false; MachineBasicBlock *MBB = CopyMI->getParent(); if (SrcLR->valno->isKill(DefIdx)) if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) { checkForDeadDef = true; } MachineBasicBlock::iterator MII = llvm::next(MachineBasicBlock::iterator(CopyMI)); tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_); MachineInstr *NewMI = prior(MII); if (checkForDeadDef) { // PR4090 fix: Trim interval failed because there was no use of the // source interval in this MBB. If the def is in this MBB too then we // should mark it dead: if (DefMI->getParent() == MBB) { DefMI->addRegisterDead(SrcInt.reg, tri_); SrcLR->end = SrcLR->start.getNextSlot(); } } // CopyMI may have implicit operands, transfer them over to the newly // rematerialized instruction. And update implicit def interval valnos. for (unsigned i = CopyMI->getDesc().getNumOperands(), e = CopyMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = CopyMI->getOperand(i); if (MO.isReg() && MO.isImplicit()) NewMI->addOperand(MO); if (MO.isDef() && li_->hasInterval(MO.getReg())) { unsigned Reg = MO.getReg(); const LiveRange *DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx); if (DLR && DLR->valno->getCopy() == CopyMI) DLR->valno->setCopy(0); // Handle subregs as well if (TargetRegisterInfo::isPhysicalRegister(Reg)) { for (const unsigned* SR = tri_->getSubRegisters(Reg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; const LiveRange *DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx); if (DLR && DLR->valno->getCopy() == CopyMI) DLR->valno->setCopy(0); } } } } TransferImplicitOps(CopyMI, NewMI); li_->ReplaceMachineInstrInMaps(CopyMI, NewMI); CopyMI->eraseFromParent(); ReMatCopies.insert(CopyMI); ReMatDefs.insert(DefMI); DEBUG(dbgs() << "Remat: " << *NewMI); ++NumReMats; return true; } /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and /// update the subregister number if it is not zero. If DstReg is a /// physical register and the existing subregister number of the def / use /// being updated is not zero, make sure to set it to the correct physical /// subregister. void SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx) { bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); if (DstIsPhys && SubIdx) { // Figure out the real physical register we are updating with. DstReg = tri_->getSubReg(DstReg, SubIdx); SubIdx = 0; } // Collect all the instructions using SrcReg. SmallPtrSet Instrs; for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg), E = mri_->reg_end(); I != E; ++I) Instrs.insert(&*I); for (SmallPtrSet::const_iterator I = Instrs.begin(), E = Instrs.end(); I != E; ++I) { MachineInstr *UseMI = *I; // A PhysReg copy that won't be coalesced can perhaps be rematerialized // instead. if (DstIsPhys) { unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx; if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx) && CopySrcSubIdx == 0 && CopyDstSubIdx == 0 && CopySrcReg != CopyDstReg && CopySrcReg == SrcReg && CopyDstReg != DstReg && !JoinedCopies.count(UseMI) && ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg, 0, UseMI)) continue; } SmallVector Ops; bool Reads, Writes; tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); bool Kills = false, Deads = false; // Replace SrcReg with DstReg in all UseMI operands. for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = UseMI->getOperand(Ops[i]); Kills |= MO.isKill(); Deads |= MO.isDead(); if (DstIsPhys) MO.substPhysReg(DstReg, *tri_); else MO.substVirtReg(DstReg, SubIdx, *tri_); } // This instruction is a copy that will be removed. if (JoinedCopies.count(UseMI)) continue; if (SubIdx) { // If UseMI was a simple SrcReg def, make sure we didn't turn it into a // read-modify-write of DstReg. if (Deads) UseMI->addRegisterDead(DstReg, tri_); else if (!Reads && Writes) UseMI->addRegisterDefined(DstReg, tri_); // Kill flags apply to the whole physical register. if (DstIsPhys && Kills) UseMI->addRegisterKilled(DstReg, tri_); } DEBUG({ dbgs() << "\t\tupdated: "; if (!UseMI->isDebugValue()) dbgs() << li_->getInstructionIndex(UseMI) << "\t"; dbgs() << *UseMI; }); // After updating the operand, check if the machine instruction has // become a copy. If so, update its val# information. const TargetInstrDesc &TID = UseMI->getDesc(); if (DstIsPhys || TID.getNumDefs() != 1 || TID.getNumOperands() <= 2) continue; unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx; if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx) && CopySrcReg != CopyDstReg && (TargetRegisterInfo::isVirtualRegister(CopyDstReg) || allocatableRegs_[CopyDstReg])) { LiveInterval &LI = li_->getInterval(CopyDstReg); SlotIndex DefIdx = li_->getInstructionIndex(UseMI).getDefIndex(); if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) { if (DLR->valno->def == DefIdx) DLR->valno->setCopy(UseMI); } } } } /// removeIntervalIfEmpty - Check if the live interval of a physical register /// is empty, if so remove it and also remove the empty intervals of its /// sub-registers. Return true if live interval is removed. static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_, const TargetRegisterInfo *tri_) { if (li.empty()) { if (TargetRegisterInfo::isPhysicalRegister(li.reg)) for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) { if (!li_->hasInterval(*SR)) continue; LiveInterval &sli = li_->getInterval(*SR); if (sli.empty()) li_->removeInterval(*SR); } li_->removeInterval(li.reg); return true; } return false; } /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy. /// Return true if live interval is removed. bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li, MachineInstr *CopyMI) { SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI); LiveInterval::iterator MLR = li.FindLiveRangeContaining(CopyIdx.getDefIndex()); if (MLR == li.end()) return false; // Already removed by ShortenDeadCopySrcLiveRange. SlotIndex RemoveStart = MLR->start; SlotIndex RemoveEnd = MLR->end; SlotIndex DefIdx = CopyIdx.getDefIndex(); // Remove the liverange that's defined by this. if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) { removeRange(li, RemoveStart, RemoveEnd, li_, tri_); return removeIntervalIfEmpty(li, li_, tri_); } return false; } /// RemoveDeadDef - If a def of a live interval is now determined dead, remove /// the val# it defines. If the live interval becomes empty, remove it as well. bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI) { SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex(); LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx); if (DefIdx != MLR->valno->def) return false; li.removeValNo(MLR->valno); return removeIntervalIfEmpty(li, li_, tri_); } /// PropagateDeadness - Propagate the dead marker to the instruction which /// defines the val#. static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI, SlotIndex &LRStart, LiveIntervals *li_, const TargetRegisterInfo* tri_) { MachineInstr *DefMI = li_->getInstructionFromIndex(LRStart.getDefIndex()); if (DefMI && DefMI != CopyMI) { int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg); if (DeadIdx != -1) DefMI->getOperand(DeadIdx).setIsDead(); else DefMI->addOperand(MachineOperand::CreateReg(li.reg, /*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true)); LRStart = LRStart.getNextSlot(); } } /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially /// extended by a dead copy. Mark the last use (if any) of the val# as kill as /// ends the live range there. If there isn't another use, then this live range /// is dead. Return true if live interval is removed. bool SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li, MachineInstr *CopyMI) { SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI); if (CopyIdx == SlotIndex()) { // FIXME: special case: function live in. It can be a general case if the // first instruction index starts at > 0 value. assert(TargetRegisterInfo::isPhysicalRegister(li.reg)); // Live-in to the function but dead. Remove it from entry live-in set. if (mf_->begin()->isLiveIn(li.reg)) mf_->begin()->removeLiveIn(li.reg); const LiveRange *LR = li.getLiveRangeContaining(CopyIdx); removeRange(li, LR->start, LR->end, li_, tri_); return removeIntervalIfEmpty(li, li_, tri_); } LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex()); if (LR == li.end()) // Livein but defined by a phi. return false; SlotIndex RemoveStart = LR->start; SlotIndex RemoveEnd = CopyIdx.getStoreIndex(); if (LR->end > RemoveEnd) // More uses past this copy? Nothing to do. return false; // If there is a last use in the same bb, we can't remove the live range. // Shorten the live interval and return. MachineBasicBlock *CopyMBB = CopyMI->getParent(); if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR)) return false; // There are other kills of the val#. Nothing to do. if (!li.isOnlyLROfValNo(LR)) return false; MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart); if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_)) // If the live range starts in another mbb and the copy mbb is not a fall // through mbb, then we can only cut the range from the beginning of the // copy mbb. RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex(); if (LR->valno->def == RemoveStart) { // If the def MI defines the val# and this copy is the only kill of the // val#, then propagate the dead marker. PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_); ++numDeadValNo; if (LR->valno->isKill(RemoveEnd)) LR->valno->removeKill(RemoveEnd); } removeRange(li, RemoveStart, RemoveEnd, li_, tri_); return removeIntervalIfEmpty(li, li_, tri_); } /// CanCoalesceWithImpDef - Returns true if the specified copy instruction /// from an implicit def to another register can be coalesced away. bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI, LiveInterval &li, LiveInterval &ImpLi) const{ if (!CopyMI->killsRegister(ImpLi.reg)) return false; // Make sure this is the only use. for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg), UE = mri_->use_end(); UI != UE;) { MachineInstr *UseMI = &*UI; ++UI; if (CopyMI == UseMI || JoinedCopies.count(UseMI)) continue; return false; } return true; } /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a /// a virtual destination register with physical source register. bool SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI, MachineBasicBlock *CopyMBB, LiveInterval &DstInt, LiveInterval &SrcInt) { // If the virtual register live interval is long but it has low use desity, // do not join them, instead mark the physical register as its allocation // preference. const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg); unsigned Threshold = allocatableRCRegs_[RC].count() * 2; unsigned Length = li_->getApproximateInstructionCount(DstInt); if (Length > Threshold && std::distance(mri_->use_nodbg_begin(DstInt.reg), mri_->use_nodbg_end()) * Threshold < Length) return false; // If the virtual register live interval extends into a loop, turn down // aggressiveness. SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex(); const MachineLoop *L = loopInfo->getLoopFor(CopyMBB); if (!L) { // Let's see if the virtual register live interval extends into the loop. LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx); assert(DLR != DstInt.end() && "Live range not found!"); DLR = DstInt.FindLiveRangeContaining(DLR->end.getNextSlot()); if (DLR != DstInt.end()) { CopyMBB = li_->getMBBFromIndex(DLR->start); L = loopInfo->getLoopFor(CopyMBB); } } if (!L || Length <= Threshold) return true; SlotIndex UseIdx = CopyIdx.getUseIndex(); LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx); MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start); if (loopInfo->getLoopFor(SMBB) != L) { if (!loopInfo->isLoopHeader(CopyMBB)) return false; // If vr's live interval extends pass the loop header, do not join. for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(), SE = CopyMBB->succ_end(); SI != SE; ++SI) { MachineBasicBlock *SuccMBB = *SI; if (SuccMBB == CopyMBB) continue; if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB), li_->getMBBEndIdx(SuccMBB))) return false; } } return true; } /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a /// copy from a virtual source register to a physical destination register. bool SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI, MachineBasicBlock *CopyMBB, LiveInterval &DstInt, LiveInterval &SrcInt) { // If the virtual register live interval is long but it has low use density, // do not join them, instead mark the physical register as its allocation // preference. const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg); unsigned Threshold = allocatableRCRegs_[RC].count() * 2; unsigned Length = li_->getApproximateInstructionCount(SrcInt); if (Length > Threshold && std::distance(mri_->use_nodbg_begin(SrcInt.reg), mri_->use_nodbg_end()) * Threshold < Length) return false; if (SrcInt.empty()) // Must be implicit_def. return false; // If the virtual register live interval is defined or cross a loop, turn // down aggressiveness. SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex(); SlotIndex UseIdx = CopyIdx.getUseIndex(); LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx); assert(SLR != SrcInt.end() && "Live range not found!"); SLR = SrcInt.FindLiveRangeContaining(SLR->start.getPrevSlot()); if (SLR == SrcInt.end()) return true; MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start); const MachineLoop *L = loopInfo->getLoopFor(SMBB); if (!L || Length <= Threshold) return true; if (loopInfo->getLoopFor(CopyMBB) != L) { if (SMBB != L->getLoopLatch()) return false; // If vr's live interval is extended from before the loop latch, do not // join. for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(), PE = SMBB->pred_end(); PI != PE; ++PI) { MachineBasicBlock *PredMBB = *PI; if (PredMBB == SMBB) continue; if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB), li_->getMBBEndIdx(PredMBB))) return false; } } return true; } /// isWinToJoinCrossClass - Return true if it's profitable to coalesce /// two virtual registers from different register classes. bool SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg, unsigned DstReg, const TargetRegisterClass *SrcRC, const TargetRegisterClass *DstRC, const TargetRegisterClass *NewRC) { unsigned NewRCCount = allocatableRCRegs_[NewRC].count(); // This heuristics is good enough in practice, but it's obviously not *right*. // 4 is a magic number that works well enough for x86, ARM, etc. It filter // out all but the most restrictive register classes. if (NewRCCount > 4 || // Early exit if the function is fairly small, coalesce aggressively if // that's the case. For really special register classes with 3 or // fewer registers, be a bit more careful. (li_->getFuncInstructionCount() / NewRCCount) < 8) return true; LiveInterval &SrcInt = li_->getInterval(SrcReg); LiveInterval &DstInt = li_->getInterval(DstReg); unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt); unsigned DstSize = li_->getApproximateInstructionCount(DstInt); if (SrcSize <= NewRCCount && DstSize <= NewRCCount) return true; // Estimate *register use density*. If it doubles or more, abort. unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg), mri_->use_nodbg_end()); unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg), mri_->use_nodbg_end()); unsigned NewUses = SrcUses + DstUses; unsigned NewSize = SrcSize + DstSize; if (SrcRC != NewRC && SrcSize > NewRCCount) { unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count(); if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount) return false; } if (DstRC != NewRC && DstSize > NewRCCount) { unsigned DstRCCount = allocatableRCRegs_[DstRC].count(); if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount) return false; } return true; } /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual /// register with a physical register, check if any of the virtual register /// operand is a sub-register use or def. If so, make sure it won't result /// in an illegal extract_subreg or insert_subreg instruction. e.g. /// vr1024 = extract_subreg vr1025, 1 /// ... /// vr1024 = mov8rr AH /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since /// AH does not have a super-reg whose sub-register 1 is AH. bool SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI, unsigned VirtReg, unsigned PhysReg) { for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg), E = mri_->reg_end(); I != E; ++I) { MachineOperand &O = I.getOperand(); if (O.isDebug()) continue; MachineInstr *MI = &*I; if (MI == CopyMI || JoinedCopies.count(MI)) continue; unsigned SubIdx = O.getSubReg(); if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx)) return true; if (MI->isExtractSubreg()) { SubIdx = MI->getOperand(2).getImm(); if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx)) return true; if (O.isDef()) { unsigned SrcReg = MI->getOperand(1).getReg(); const TargetRegisterClass *RC = TargetRegisterInfo::isPhysicalRegister(SrcReg) ? tri_->getPhysicalRegisterRegClass(SrcReg) : mri_->getRegClass(SrcReg); if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC)) return true; } } if (MI->isInsertSubreg() || MI->isSubregToReg()) { SubIdx = MI->getOperand(3).getImm(); if (VirtReg == MI->getOperand(0).getReg()) { if (!tri_->getSubReg(PhysReg, SubIdx)) return true; } else { unsigned DstReg = MI->getOperand(0).getReg(); const TargetRegisterClass *RC = TargetRegisterInfo::isPhysicalRegister(DstReg) ? tri_->getPhysicalRegisterRegClass(DstReg) : mri_->getRegClass(DstReg); if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC)) return true; } } } return false; } /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce /// an extract_subreg where dst is a physical register, e.g. /// cl = EXTRACT_SUBREG reg1024, 1 bool SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg, unsigned SrcReg, unsigned SubIdx, unsigned &RealDstReg) { const TargetRegisterClass *RC = mri_->getRegClass(SrcReg); RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC); if (!RealDstReg) { DEBUG(dbgs() << "\tIncompatible source regclass: " << "none of the super-registers of " << tri_->getName(DstReg) << " are in " << RC->getName() << ".\n"); return false; } LiveInterval &RHS = li_->getInterval(SrcReg); // For this type of EXTRACT_SUBREG, conservatively // check if the live interval of the source register interfere with the // actual super physical register we are trying to coalesce with. if (li_->hasInterval(RealDstReg) && RHS.overlaps(li_->getInterval(RealDstReg))) { DEBUG({ dbgs() << "\t\tInterfere with register "; li_->getInterval(RealDstReg).print(dbgs(), tri_); }); return false; // Not coalescable } for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR) // Do not check DstReg or its sub-register. JoinIntervals() will take care // of that. if (*SR != DstReg && !tri_->isSubRegister(DstReg, *SR) && li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { DEBUG({ dbgs() << "\t\tInterfere with sub-register "; li_->getInterval(*SR).print(dbgs(), tri_); }); return false; // Not coalescable } return true; } /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce /// an insert_subreg where src is a physical register, e.g. /// reg1024 = INSERT_SUBREG reg1024, c1, 0 bool SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg, unsigned SrcReg, unsigned SubIdx, unsigned &RealSrcReg) { const TargetRegisterClass *RC = mri_->getRegClass(DstReg); RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC); if (!RealSrcReg) { DEBUG(dbgs() << "\tIncompatible destination regclass: " << "none of the super-registers of " << tri_->getName(SrcReg) << " are in " << RC->getName() << ".\n"); return false; } LiveInterval &LHS = li_->getInterval(DstReg); if (li_->hasInterval(RealSrcReg) && LHS.overlaps(li_->getInterval(RealSrcReg))) { DEBUG({ dbgs() << "\t\tInterfere with register "; li_->getInterval(RealSrcReg).print(dbgs(), tri_); }); return false; // Not coalescable } for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR) // Do not check SrcReg or its sub-register. JoinIntervals() will take care // of that. if (*SR != SrcReg && !tri_->isSubRegister(SrcReg, *SR) && li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) { DEBUG({ dbgs() << "\t\tInterfere with sub-register "; li_->getInterval(*SR).print(dbgs(), tri_); }); return false; // Not coalescable } return true; } /// getRegAllocPreference - Return register allocation preference register. /// static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF, MachineRegisterInfo *MRI, const TargetRegisterInfo *TRI) { if (TargetRegisterInfo::isPhysicalRegister(Reg)) return 0; std::pair Hint = MRI->getRegAllocationHint(Reg); return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF); } /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, /// which are the src/dst of the copy instruction CopyMI. This returns true /// if the copy was successfully coalesced away. If it is not currently /// possible to coalesce this interval, but it may be possible if other /// things get coalesced, then it returns true by reference in 'Again'. bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) { MachineInstr *CopyMI = TheCopy.MI; Again = false; if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI)) return false; // Already done. DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI); unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0; bool isExtSubReg = CopyMI->isExtractSubreg(); bool isInsSubReg = CopyMI->isInsertSubreg(); bool isSubRegToReg = CopyMI->isSubregToReg(); unsigned SubIdx = 0; if (isExtSubReg) { DstReg = CopyMI->getOperand(0).getReg(); DstSubIdx = CopyMI->getOperand(0).getSubReg(); SrcReg = CopyMI->getOperand(1).getReg(); SrcSubIdx = CopyMI->getOperand(2).getImm(); } else if (isInsSubReg || isSubRegToReg) { DstReg = CopyMI->getOperand(0).getReg(); DstSubIdx = CopyMI->getOperand(3).getImm(); SrcReg = CopyMI->getOperand(2).getReg(); SrcSubIdx = CopyMI->getOperand(2).getSubReg(); if (SrcSubIdx && SrcSubIdx != DstSubIdx) { // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been // coalesced to a larger register so the subreg indices cancel out. DEBUG(dbgs() << "\tSource of insert_subreg or subreg_to_reg is already " "coalesced to another register.\n"); return false; // Not coalescable. } } else if (tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) { if (SrcSubIdx && DstSubIdx && SrcSubIdx != DstSubIdx) { // e.g. %reg16404:1 = MOV8rr %reg16412:2 Again = true; return false; // Not coalescable. } } else { llvm_unreachable("Unrecognized copy instruction!"); } // If they are already joined we continue. if (SrcReg == DstReg) { DEBUG(dbgs() << "\tCopy already coalesced.\n"); return false; // Not coalescable. } bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); // If they are both physical registers, we cannot join them. if (SrcIsPhys && DstIsPhys) { DEBUG(dbgs() << "\tCan not coalesce physregs.\n"); return false; // Not coalescable. } // We only join virtual registers with allocatable physical registers. if (SrcIsPhys && !allocatableRegs_[SrcReg]) { DEBUG(dbgs() << "\tSrc reg is unallocatable physreg.\n"); return false; // Not coalescable. } if (DstIsPhys && !allocatableRegs_[DstReg]) { DEBUG(dbgs() << "\tDst reg is unallocatable physreg.\n"); return false; // Not coalescable. } // We cannot handle dual subreg indices and mismatched classes at the same // time. if (SrcSubIdx && DstSubIdx && differingRegisterClasses(SrcReg, DstReg)) { DEBUG(dbgs() << "\tCannot handle subreg indices and mismatched classes.\n"); return false; } // Check that a physical source register is compatible with dst regclass if (SrcIsPhys) { unsigned SrcSubReg = SrcSubIdx ? tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg; const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg); const TargetRegisterClass *DstSubRC = DstRC; if (DstSubIdx) DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx); assert(DstSubRC && "Illegal subregister index"); if (!DstSubRC->contains(SrcSubReg)) { DEBUG(dbgs() << "\tIncompatible destination regclass: " << "none of the super-registers of " << tri_->getName(SrcSubReg) << " are in " << DstSubRC->getName() << ".\n"); return false; // Not coalescable. } } // Check that a physical dst register is compatible with source regclass if (DstIsPhys) { unsigned DstSubReg = DstSubIdx ? tri_->getSubReg(DstReg, DstSubIdx) : DstReg; const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg); const TargetRegisterClass *SrcSubRC = SrcRC; if (SrcSubIdx) SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx); assert(SrcSubRC && "Illegal subregister index"); if (!SrcSubRC->contains(DstSubReg)) { DEBUG(dbgs() << "\tIncompatible source regclass: " << "none of the super-registers of " << tri_->getName(DstSubReg) << " are in " << SrcSubRC->getName() << ".\n"); (void)DstSubReg; return false; // Not coalescable. } } // Should be non-null only when coalescing to a sub-register class. bool CrossRC = false; const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg); const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg); const TargetRegisterClass *NewRC = NULL; unsigned RealDstReg = 0; unsigned RealSrcReg = 0; if (isExtSubReg || isInsSubReg || isSubRegToReg) { SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm(); if (SrcIsPhys && isExtSubReg) { // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be // coalesced with AX. unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg(); if (DstSubIdx) { // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been // coalesced to a larger register so the subreg indices cancel out. if (DstSubIdx != SubIdx) { DEBUG(dbgs() << "\t Sub-register indices mismatch.\n"); return false; // Not coalescable. } } else SrcReg = tri_->getSubReg(SrcReg, SubIdx); SubIdx = 0; } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) { // EAX = INSERT_SUBREG EAX, r1024, 0 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg(); if (SrcSubIdx) { // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been // coalesced to a larger register so the subreg indices cancel out. if (SrcSubIdx != SubIdx) { DEBUG(dbgs() << "\t Sub-register indices mismatch.\n"); return false; // Not coalescable. } } else DstReg = tri_->getSubReg(DstReg, SubIdx); SubIdx = 0; } else if ((DstIsPhys && isExtSubReg) || (SrcIsPhys && (isInsSubReg || isSubRegToReg))) { if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) { DEBUG(dbgs() << "\tSrc of extract_subreg already coalesced with reg" << " of a super-class.\n"); return false; // Not coalescable. } // FIXME: The following checks are somewhat conservative. Perhaps a better // way to implement this is to treat this as coalescing a vr with the // super physical register. if (isExtSubReg) { if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg)) return false; // Not coalescable } else { if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg)) return false; // Not coalescable } SubIdx = 0; } else { unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg() : CopyMI->getOperand(2).getSubReg(); if (OldSubIdx) { if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg)) // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been // coalesced to a larger register so the subreg indices cancel out. // Also check if the other larger register is of the same register // class as the would be resulting register. SubIdx = 0; else { DEBUG(dbgs() << "\t Sub-register indices mismatch.\n"); return false; // Not coalescable. } } if (SubIdx) { if (!DstIsPhys && !SrcIsPhys) { if (isInsSubReg || isSubRegToReg) { NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx); } else // extract_subreg { NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx); } if (!NewRC) { DEBUG(dbgs() << "\t Conflicting sub-register indices.\n"); return false; // Not coalescable } if (!isWinToJoinCrossClass(SrcReg, DstReg, SrcRC, DstRC, NewRC)) { DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: " << SrcRC->getName() << "/" << DstRC->getName() << " -> " << NewRC->getName() << ".\n"); Again = true; // May be possible to coalesce later. return false; } } } } else if (differingRegisterClasses(SrcReg, DstReg)) { if (DisableCrossClassJoin) return false; CrossRC = true; // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced // with another? If it's the resulting destination register, then // the subidx must be propagated to uses (but only those defined // by the EXTRACT_SUBREG). If it's being coalesced into another // register, it should be safe because register is assumed to have // the register class of the super-register. // Process moves where one of the registers have a sub-register index. MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg); MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg); SubIdx = DstMO->getSubReg(); if (SubIdx) { if (SrcMO->getSubReg()) // FIXME: can we handle this? return false; // This is not an insert_subreg but it looks like one. // e.g. %reg1024:4 = MOV32rr %EAX isInsSubReg = true; if (SrcIsPhys) { if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg)) return false; // Not coalescable SubIdx = 0; } } else { SubIdx = SrcMO->getSubReg(); if (SubIdx) { // This is not a extract_subreg but it looks like one. // e.g. %cl = MOV16rr %reg1024:1 isExtSubReg = true; if (DstIsPhys) { if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg)) return false; // Not coalescable SubIdx = 0; } } } // Now determine the register class of the joined register. if (!SrcIsPhys && !DstIsPhys) { if (isExtSubReg) { NewRC = SubIdx ? tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx) : SrcRC; } else if (isInsSubReg) { NewRC = SubIdx ? tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx) : DstRC; } else { NewRC = getCommonSubClass(SrcRC, DstRC); } if (!NewRC) { DEBUG(dbgs() << "\tDisjoint regclasses: " << SrcRC->getName() << ", " << DstRC->getName() << ".\n"); return false; // Not coalescable. } // If we are joining two virtual registers and the resulting register // class is more restrictive (fewer register, smaller size). Check if it's // worth doing the merge. if (!isWinToJoinCrossClass(SrcReg, DstReg, SrcRC, DstRC, NewRC)) { DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: " << SrcRC->getName() << "/" << DstRC->getName() << " -> " << NewRC->getName() << ".\n"); // Allow the coalescer to try again in case either side gets coalesced to // a physical register that's compatible with the other side. e.g. // r1024 = MOV32to32_ r1025 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX. Again = true; // May be possible to coalesce later. return false; } } } // Will it create illegal extract_subreg / insert_subreg? if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg)) return false; if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg)) return false; LiveInterval &SrcInt = li_->getInterval(SrcReg); LiveInterval &DstInt = li_->getInterval(DstReg); assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg && "Register mapping is horribly broken!"); DEBUG({ dbgs() << "\t\tInspecting "; if (SrcRC) dbgs() << SrcRC->getName() << ": "; SrcInt.print(dbgs(), tri_); dbgs() << "\n\t\t and "; if (DstRC) dbgs() << DstRC->getName() << ": "; DstInt.print(dbgs(), tri_); dbgs() << "\n"; }); // Save a copy of the virtual register live interval. We'll manually // merge this into the "real" physical register live interval this is // coalesced with. OwningPtr SavedLI; if (RealDstReg) SavedLI.reset(li_->dupInterval(&SrcInt)); else if (RealSrcReg) SavedLI.reset(li_->dupInterval(&DstInt)); if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) { // Check if it is necessary to propagate "isDead" property. MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false); bool isDead = mopd->isDead(); // We need to be careful about coalescing a source physical register with a // virtual register. Once the coalescing is done, it cannot be broken and // these are not spillable! If the destination interval uses are far away, // think twice about coalescing them! if (!isDead && (SrcIsPhys || DstIsPhys)) { // If the virtual register live interval is long but it has low use // density, do not join them, instead mark the physical register as its // allocation preference. LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt; LiveInterval &JoinPInt = SrcIsPhys ? SrcInt : DstInt; unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg; unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg; // Don't join with physregs that have a ridiculous number of live // ranges. The data structure performance is really bad when that // happens. if (JoinPInt.ranges.size() > 1000) { mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg); ++numAborts; DEBUG(dbgs() << "\tPhysical register live interval too complicated, abort!\n"); return false; } const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg); unsigned Threshold = allocatableRCRegs_[RC].count() * 2; unsigned Length = li_->getApproximateInstructionCount(JoinVInt); if (Length > Threshold && std::distance(mri_->use_nodbg_begin(JoinVReg), mri_->use_nodbg_end()) * Threshold < Length) { // Before giving up coalescing, if definition of source is defined by // trivial computation, try rematerializing it. if (ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI)) return true; mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg); ++numAborts; DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n"); Again = true; // May be possible to coalesce later. return false; } } } // Okay, attempt to join these two intervals. On failure, this returns false. // Otherwise, if one of the intervals being joined is a physreg, this method // always canonicalizes DstInt to be it. The output "SrcInt" will not have // been modified, so we can use this information below to update aliases. bool Swapped = false; // If SrcInt is implicitly defined, it's safe to coalesce. if (SrcInt.empty()) { if (!CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) { // Only coalesce an empty interval (defined by implicit_def) with // another interval which has a valno defined by the CopyMI and the CopyMI // is a kill of the implicit def. DEBUG(dbgs() << "\tNot profitable!\n"); return false; } } else if (!JoinIntervals(DstInt, SrcInt, Swapped)) { // Coalescing failed. // If definition of source is defined by trivial computation, try // rematerializing it. if (!isExtSubReg && !isInsSubReg && !isSubRegToReg && ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI)) return true; // If we can eliminate the copy without merging the live ranges, do so now. if (!isExtSubReg && !isInsSubReg && !isSubRegToReg && (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) || RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) { JoinedCopies.insert(CopyMI); DEBUG(dbgs() << "\tTrivial!\n"); return true; } // Otherwise, we are unable to join the intervals. DEBUG(dbgs() << "\tInterference!\n"); Again = true; // May be possible to coalesce later. return false; } LiveInterval *ResSrcInt = &SrcInt; LiveInterval *ResDstInt = &DstInt; if (Swapped) { std::swap(SrcReg, DstReg); std::swap(ResSrcInt, ResDstInt); } assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && "LiveInterval::join didn't work right!"); // If we're about to merge live ranges into a physical register live interval, // we have to update any aliased register's live ranges to indicate that they // have clobbered values for this range. if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { // If this is a extract_subreg where dst is a physical register, e.g. // cl = EXTRACT_SUBREG reg1024, 1 // then create and update the actual physical register allocated to RHS. if (RealDstReg || RealSrcReg) { LiveInterval &RealInt = li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg); for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(), E = SavedLI->vni_end(); I != E; ++I) { const VNInfo *ValNo = *I; VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(), false, // updated at * li_->getVNInfoAllocator()); NewValNo->setFlags(ValNo->getFlags()); // * updated here. RealInt.addKills(NewValNo, ValNo->kills); RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo); } RealInt.weight += SavedLI->weight; DstReg = RealDstReg ? RealDstReg : RealSrcReg; } // Update the liveintervals of sub-registers. for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS) li_->getOrCreateInterval(*AS).MergeInClobberRanges(*li_, *ResSrcInt, li_->getVNInfoAllocator()); } // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the // larger super-register. if ((isExtSubReg || isInsSubReg || isSubRegToReg) && !SrcIsPhys && !DstIsPhys) { if ((isExtSubReg && !Swapped) || ((isInsSubReg || isSubRegToReg) && Swapped)) { ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator()); std::swap(SrcReg, DstReg); std::swap(ResSrcInt, ResDstInt); } } // Coalescing to a virtual register that is of a sub-register class of the // other. Make sure the resulting register is set to the right register class. if (CrossRC) ++numCrossRCs; // This may happen even if it's cross-rc coalescing. e.g. // %reg1026 = SUBREG_TO_REG 0, %reg1037, 4 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to // be allocate a register from GR64_ABCD. if (NewRC) mri_->setRegClass(DstReg, NewRC); // Remember to delete the copy instruction. JoinedCopies.insert(CopyMI); UpdateRegDefsUses(SrcReg, DstReg, SubIdx); // If we have extended the live range of a physical register, make sure we // update live-in lists as well. if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { const LiveInterval &VRegInterval = li_->getInterval(SrcReg); SmallVector BlockSeq; for (LiveInterval::const_iterator I = VRegInterval.begin(), E = VRegInterval.end(); I != E; ++I ) { li_->findLiveInMBBs(I->start, I->end, BlockSeq); for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) { MachineBasicBlock &block = *BlockSeq[idx]; if (!block.isLiveIn(DstReg)) block.addLiveIn(DstReg); } BlockSeq.clear(); } } // SrcReg is guarateed to be the register whose live interval that is // being merged. li_->removeInterval(SrcReg); // Update regalloc hint. tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_); // Manually deleted the live interval copy. if (SavedLI) { SavedLI->clear(); SavedLI.reset(); } // If resulting interval has a preference that no longer fits because of subreg // coalescing, just clear the preference. unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_); if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) && TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) { const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg); if (!RC->contains(Preference)) mri_->setRegAllocationHint(ResDstInt->reg, 0, 0); } DEBUG({ dbgs() << "\t\tJoined. Result = "; ResDstInt->print(dbgs(), tri_); dbgs() << "\n"; }); ++numJoins; return true; } /// ComputeUltimateVN - Assuming we are going to join two live intervals, /// compute what the resultant value numbers for each value in the input two /// ranges will be. This is complicated by copies between the two which can /// and will commonly cause multiple value numbers to be merged into one. /// /// VN is the value number that we're trying to resolve. InstDefiningValue /// keeps track of the new InstDefiningValue assignment for the result /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of /// whether a value in this or other is a copy from the opposite set. /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have /// already been assigned. /// /// ThisFromOther[x] - If x is defined as a copy from the other interval, this /// contains the value number the copy is from. /// static unsigned ComputeUltimateVN(VNInfo *VNI, SmallVector &NewVNInfo, DenseMap &ThisFromOther, DenseMap &OtherFromThis, SmallVector &ThisValNoAssignments, SmallVector &OtherValNoAssignments) { unsigned VN = VNI->id; // If the VN has already been computed, just return it. if (ThisValNoAssignments[VN] >= 0) return ThisValNoAssignments[VN]; assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers"); // If this val is not a copy from the other val, then it must be a new value // number in the destination. DenseMap::iterator I = ThisFromOther.find(VNI); if (I == ThisFromOther.end()) { NewVNInfo.push_back(VNI); return ThisValNoAssignments[VN] = NewVNInfo.size()-1; } VNInfo *OtherValNo = I->second; // Otherwise, this *is* a copy from the RHS. If the other side has already // been computed, return it. if (OtherValNoAssignments[OtherValNo->id] >= 0) return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id]; // Mark this value number as currently being computed, then ask what the // ultimate value # of the other value is. ThisValNoAssignments[VN] = -2; unsigned UltimateVN = ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther, OtherValNoAssignments, ThisValNoAssignments); return ThisValNoAssignments[VN] = UltimateVN; } static bool InVector(VNInfo *Val, const SmallVector &V) { return std::find(V.begin(), V.end(), Val) != V.end(); } static bool isValNoDefMove(const MachineInstr *MI, unsigned DR, unsigned SR, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) { unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) ; else if (MI->isExtractSubreg()) { DstReg = MI->getOperand(0).getReg(); SrcReg = MI->getOperand(1).getReg(); } else if (MI->isSubregToReg() || MI->isInsertSubreg()) { DstReg = MI->getOperand(0).getReg(); SrcReg = MI->getOperand(2).getReg(); } else return false; return (SrcReg == SR || TRI->isSuperRegister(SR, SrcReg)) && (DstReg == DR || TRI->isSuperRegister(DR, DstReg)); } /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of /// the specified live interval is defined by a copy from the specified /// register. bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li, LiveRange *LR, unsigned Reg) { unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno); if (SrcReg == Reg) return true; // FIXME: Do isPHIDef and isDefAccurate both need to be tested? if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) && TargetRegisterInfo::isPhysicalRegister(li.reg) && *tri_->getSuperRegisters(li.reg)) { // It's a sub-register live interval, we may not have precise information. // Re-compute it. MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start); if (DefMI && isValNoDefMove(DefMI, li.reg, Reg, tii_, tri_)) { // Cache computed info. LR->valno->def = LR->start; LR->valno->setCopy(DefMI); return true; } } return false; } /// ValueLiveAt - Return true if the LiveRange pointed to by the given /// iterator, or any subsequent range with the same value number, /// is live at the given point. bool SimpleRegisterCoalescing::ValueLiveAt(LiveInterval::iterator LRItr, LiveInterval::iterator LREnd, SlotIndex defPoint) const { for (const VNInfo *valno = LRItr->valno; (LRItr != LREnd) && (LRItr->valno == valno); ++LRItr) { if (LRItr->contains(defPoint)) return true; } return false; } /// SimpleJoin - Attempt to joint the specified interval into this one. The /// caller of this method must guarantee that the RHS only contains a single /// value number and that the RHS is not defined by a copy from this /// interval. This returns false if the intervals are not joinable, or it /// joins them and returns true. bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){ assert(RHS.containsOneValue()); // Some number (potentially more than one) value numbers in the current // interval may be defined as copies from the RHS. Scan the overlapping // portions of the LHS and RHS, keeping track of this and looking for // overlapping live ranges that are NOT defined as copies. If these exist, we // cannot coalesce. LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end(); LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end(); if (LHSIt->start < RHSIt->start) { LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start); if (LHSIt != LHS.begin()) --LHSIt; } else if (RHSIt->start < LHSIt->start) { RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start); if (RHSIt != RHS.begin()) --RHSIt; } SmallVector EliminatedLHSVals; while (1) { // Determine if these live intervals overlap. bool Overlaps = false; if (LHSIt->start <= RHSIt->start) Overlaps = LHSIt->end > RHSIt->start; else Overlaps = RHSIt->end > LHSIt->start; // If the live intervals overlap, there are two interesting cases: if the // LHS interval is defined by a copy from the RHS, it's ok and we record // that the LHS value # is the same as the RHS. If it's not, then we cannot // coalesce these live ranges and we bail out. if (Overlaps) { // If we haven't already recorded that this value # is safe, check it. if (!InVector(LHSIt->valno, EliminatedLHSVals)) { // If it's re-defined by an early clobber somewhere in the live range, // then conservatively abort coalescing. if (LHSIt->valno->hasRedefByEC()) return false; // Copy from the RHS? if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) return false; // Nope, bail out. if (ValueLiveAt(LHSIt, LHS.end(), RHSIt->valno->def)) // Here is an interesting situation: // BB1: // vr1025 = copy vr1024 // .. // BB2: // vr1024 = op // = vr1025 // Even though vr1025 is copied from vr1024, it's not safe to // coalesce them since the live range of vr1025 intersects the // def of vr1024. This happens because vr1025 is assigned the // value of the previous iteration of vr1024. return false; EliminatedLHSVals.push_back(LHSIt->valno); } // We know this entire LHS live range is okay, so skip it now. if (++LHSIt == LHSEnd) break; continue; } if (LHSIt->end < RHSIt->end) { if (++LHSIt == LHSEnd) break; } else { // One interesting case to check here. It's possible that we have // something like "X3 = Y" which defines a new value number in the LHS, // and is the last use of this liverange of the RHS. In this case, we // want to notice this copy (so that it gets coalesced away) even though // the live ranges don't actually overlap. if (LHSIt->start == RHSIt->end) { if (InVector(LHSIt->valno, EliminatedLHSVals)) { // We already know that this value number is going to be merged in // if coalescing succeeds. Just skip the liverange. if (++LHSIt == LHSEnd) break; } else { // If it's re-defined by an early clobber somewhere in the live range, // then conservatively abort coalescing. if (LHSIt->valno->hasRedefByEC()) return false; // Otherwise, if this is a copy from the RHS, mark it as being merged // in. if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) { if (ValueLiveAt(LHSIt, LHS.end(), RHSIt->valno->def)) // Here is an interesting situation: // BB1: // vr1025 = copy vr1024 // .. // BB2: // vr1024 = op // = vr1025 // Even though vr1025 is copied from vr1024, it's not safe to // coalesced them since live range of vr1025 intersects the // def of vr1024. This happens because vr1025 is assigned the // value of the previous iteration of vr1024. return false; EliminatedLHSVals.push_back(LHSIt->valno); // We know this entire LHS live range is okay, so skip it now. if (++LHSIt == LHSEnd) break; } } } if (++RHSIt == RHSEnd) break; } } // If we got here, we know that the coalescing will be successful and that // the value numbers in EliminatedLHSVals will all be merged together. Since // the most common case is that EliminatedLHSVals has a single number, we // optimize for it: if there is more than one value, we merge them all into // the lowest numbered one, then handle the interval as if we were merging // with one value number. VNInfo *LHSValNo = NULL; if (EliminatedLHSVals.size() > 1) { // Loop through all the equal value numbers merging them into the smallest // one. VNInfo *Smallest = EliminatedLHSVals[0]; for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) { if (EliminatedLHSVals[i]->id < Smallest->id) { // Merge the current notion of the smallest into the smaller one. LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]); Smallest = EliminatedLHSVals[i]; } else { // Merge into the smallest. LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest); } } LHSValNo = Smallest; } else if (EliminatedLHSVals.empty()) { if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) && *tri_->getSuperRegisters(LHS.reg)) // Imprecise sub-register information. Can't handle it. return false; llvm_unreachable("No copies from the RHS?"); } else { LHSValNo = EliminatedLHSVals[0]; } // Okay, now that there is a single LHS value number that we're merging the // RHS into, update the value number info for the LHS to indicate that the // value number is defined where the RHS value number was. const VNInfo *VNI = RHS.getValNumInfo(0); LHSValNo->def = VNI->def; LHSValNo->setCopy(VNI->getCopy()); // Okay, the final step is to loop over the RHS live intervals, adding them to // the LHS. if (VNI->hasPHIKill()) LHSValNo->setHasPHIKill(true); LHS.addKills(LHSValNo, VNI->kills); LHS.MergeRangesInAsValue(RHS, LHSValNo); LHS.ComputeJoinedWeight(RHS); // Update regalloc hint if both are virtual registers. if (TargetRegisterInfo::isVirtualRegister(LHS.reg) && TargetRegisterInfo::isVirtualRegister(RHS.reg)) { std::pair RHSPref = mri_->getRegAllocationHint(RHS.reg); std::pair LHSPref = mri_->getRegAllocationHint(LHS.reg); if (RHSPref != LHSPref) mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second); } // Update the liveintervals of sub-registers. if (TargetRegisterInfo::isPhysicalRegister(LHS.reg)) for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS) li_->getOrCreateInterval(*AS).MergeInClobberRanges(*li_, LHS, li_->getVNInfoAllocator()); return true; } /// JoinIntervals - Attempt to join these two intervals. On failure, this /// returns false. Otherwise, if one of the intervals being joined is a /// physreg, this method always canonicalizes LHS to be it. The output /// "RHS" will not have been modified, so we can use this information /// below to update aliases. bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS, bool &Swapped) { // Compute the final value assignment, assuming that the live ranges can be // coalesced. SmallVector LHSValNoAssignments; SmallVector RHSValNoAssignments; DenseMap LHSValsDefinedFromRHS; DenseMap RHSValsDefinedFromLHS; SmallVector NewVNInfo; // If a live interval is a physical register, conservatively check if any // of its sub-registers is overlapping the live interval of the virtual // register. If so, do not coalesce. if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) && *tri_->getSubRegisters(LHS.reg)) { // If it's coalescing a virtual register to a physical register, estimate // its live interval length. This is the *cost* of scanning an entire live // interval. If the cost is low, we'll do an exhaustive check instead. // If this is something like this: // BB1: // v1024 = op // ... // BB2: // ... // RAX = v1024 // // That is, the live interval of v1024 crosses a bb. Then we can't rely on // less conservative check. It's possible a sub-register is defined before // v1024 (or live in) and live out of BB1. if (RHS.containsOneValue() && li_->intervalIsInOneMBB(RHS) && li_->getApproximateInstructionCount(RHS) <= 10) { // Perform a more exhaustive check for some common cases. if (li_->conflictsWithSubPhysRegRef(RHS, LHS.reg, true, JoinedCopies)) return false; } else { for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR) if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { DEBUG({ dbgs() << "\tInterfere with sub-register "; li_->getInterval(*SR).print(dbgs(), tri_); }); return false; } } } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) && *tri_->getSubRegisters(RHS.reg)) { if (LHS.containsOneValue() && li_->getApproximateInstructionCount(LHS) <= 10) { // Perform a more exhaustive check for some common cases. if (li_->conflictsWithSubPhysRegRef(LHS, RHS.reg, false, JoinedCopies)) return false; } else { for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR) if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) { DEBUG({ dbgs() << "\tInterfere with sub-register "; li_->getInterval(*SR).print(dbgs(), tri_); }); return false; } } } // Compute ultimate value numbers for the LHS and RHS values. if (RHS.containsOneValue()) { // Copies from a liveinterval with a single value are simple to handle and // very common, handle the special case here. This is important, because // often RHS is small and LHS is large (e.g. a physreg). // Find out if the RHS is defined as a copy from some value in the LHS. int RHSVal0DefinedFromLHS = -1; int RHSValID = -1; VNInfo *RHSValNoInfo = NULL; VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0); unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0); if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) { // If RHS is not defined as a copy from the LHS, we can use simpler and // faster checks to see if the live ranges are coalescable. This joiner // can't swap the LHS/RHS intervals though. if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) { return SimpleJoin(LHS, RHS); } else { RHSValNoInfo = RHSValNoInfo0; } } else { // It was defined as a copy from the LHS, find out what value # it is. RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def.getPrevSlot())->valno; RHSValID = RHSValNoInfo->id; RHSVal0DefinedFromLHS = RHSValID; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); NewVNInfo.resize(LHS.getNumValNums(), NULL); // Okay, *all* of the values in LHS that are defined as a copy from RHS // should now get updated. for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) { if (LHSSrcReg != RHS.reg) { // If this is not a copy from the RHS, its value number will be // unmodified by the coalescing. NewVNInfo[VN] = VNI; LHSValNoAssignments[VN] = VN; } else if (RHSValID == -1) { // Otherwise, it is a copy from the RHS, and we don't already have a // value# for it. Keep the current value number, but remember it. LHSValNoAssignments[VN] = RHSValID = VN; NewVNInfo[VN] = RHSValNoInfo; LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; } else { // Otherwise, use the specified value #. LHSValNoAssignments[VN] = RHSValID; if (VN == (unsigned)RHSValID) { // Else this val# is dead. NewVNInfo[VN] = RHSValNoInfo; LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; } } } else { NewVNInfo[VN] = VNI; LHSValNoAssignments[VN] = VN; } } assert(RHSValID != -1 && "Didn't find value #?"); RHSValNoAssignments[0] = RHSValID; if (RHSVal0DefinedFromLHS != -1) { // This path doesn't go through ComputeUltimateVN so just set // it to anything. RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1; } } else { // Loop over the value numbers of the LHS, seeing if any are defined from // the RHS. for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy? continue; // DstReg is known to be a register in the LHS interval. If the src is // from the RHS interval, we can use its value #. if (li_->getVNInfoSourceReg(VNI) != RHS.reg) continue; // Figure out the value # from the RHS. LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot()); assert(lr && "Cannot find live range"); LHSValsDefinedFromRHS[VNI] = lr->valno; } // Loop over the value numbers of the RHS, seeing if any are defined from // the LHS. for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy? continue; // DstReg is known to be a register in the RHS interval. If the src is // from the LHS interval, we can use its value #. if (li_->getVNInfoSourceReg(VNI) != LHS.reg) continue; // Figure out the value # from the LHS. LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot()); assert(lr && "Cannot find live range"); RHSValsDefinedFromLHS[VNI] = lr->valno; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused()) continue; ComputeUltimateVN(VNI, NewVNInfo, LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, LHSValNoAssignments, RHSValNoAssignments); } for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); i != e; ++i) { VNInfo *VNI = *i; unsigned VN = VNI->id; if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused()) continue; // If this value number isn't a copy from the LHS, it's a new number. if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) { NewVNInfo.push_back(VNI); RHSValNoAssignments[VN] = NewVNInfo.size()-1; continue; } ComputeUltimateVN(VNI, NewVNInfo, RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, RHSValNoAssignments, LHSValNoAssignments); } } // Armed with the mappings of LHS/RHS values to ultimate values, walk the // interval lists to see if these intervals are coalescable. LiveInterval::const_iterator I = LHS.begin(); LiveInterval::const_iterator IE = LHS.end(); LiveInterval::const_iterator J = RHS.begin(); LiveInterval::const_iterator JE = RHS.end(); // Skip ahead until the first place of potential sharing. if (I->start < J->start) { I = std::upper_bound(I, IE, J->start); if (I != LHS.begin()) --I; } else if (J->start < I->start) { J = std::upper_bound(J, JE, I->start); if (J != RHS.begin()) --J; } while (1) { // Determine if these two live ranges overlap. bool Overlaps; if (I->start < J->start) { Overlaps = I->end > J->start; } else { Overlaps = J->end > I->start; } // If so, check value # info to determine if they are really different. if (Overlaps) { // If the live range overlap will map to the same value number in the // result liverange, we can still coalesce them. If not, we can't. if (LHSValNoAssignments[I->valno->id] != RHSValNoAssignments[J->valno->id]) return false; // If it's re-defined by an early clobber somewhere in the live range, // then conservatively abort coalescing. if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC()) return false; } if (I->end < J->end) { ++I; if (I == IE) break; } else { ++J; if (J == JE) break; } } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = LHSValsDefinedFromRHS.begin(), E = LHSValsDefinedFromRHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned LHSValID = LHSValNoAssignments[VNI->id]; NewVNInfo[LHSValID]->removeKill(VNI->def); if (VNI->hasPHIKill()) NewVNInfo[LHSValID]->setHasPHIKill(true); RHS.addKills(NewVNInfo[LHSValID], VNI->kills); } // Update kill info. Some live ranges are extended due to copy coalescing. for (DenseMap::iterator I = RHSValsDefinedFromLHS.begin(), E = RHSValsDefinedFromLHS.end(); I != E; ++I) { VNInfo *VNI = I->first; unsigned RHSValID = RHSValNoAssignments[VNI->id]; NewVNInfo[RHSValID]->removeKill(VNI->def); if (VNI->hasPHIKill()) NewVNInfo[RHSValID]->setHasPHIKill(true); LHS.addKills(NewVNInfo[RHSValID], VNI->kills); } // If we get here, we know that we can coalesce the live ranges. Ask the // intervals to coalesce themselves now. if ((RHS.ranges.size() > LHS.ranges.size() && TargetRegisterInfo::isVirtualRegister(LHS.reg)) || TargetRegisterInfo::isPhysicalRegister(RHS.reg)) { RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo, mri_); Swapped = true; } else { LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo, mri_); Swapped = false; } return true; } namespace { // DepthMBBCompare - Comparison predicate that sort first based on the loop // depth of the basic block (the unsigned), and then on the MBB number. struct DepthMBBCompare { typedef std::pair DepthMBBPair; bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { // Deeper loops first if (LHS.first != RHS.first) return LHS.first > RHS.first; // Prefer blocks that are more connected in the CFG. This takes care of // the most difficult copies first while intervals are short. unsigned cl = LHS.second->pred_size() + LHS.second->succ_size(); unsigned cr = RHS.second->pred_size() + RHS.second->succ_size(); if (cl != cr) return cl > cr; // As a last resort, sort by block number. return LHS.second->getNumber() < RHS.second->getNumber(); } }; } void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB, std::vector &TryAgain) { DEBUG(dbgs() << MBB->getName() << ":\n"); std::vector VirtCopies; std::vector PhysCopies; std::vector ImpDefCopies; for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E;) { MachineInstr *Inst = MII++; // If this isn't a copy nor a extract_subreg, we can't join intervals. unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; bool isInsUndef = false; if (Inst->isExtractSubreg()) { DstReg = Inst->getOperand(0).getReg(); SrcReg = Inst->getOperand(1).getReg(); } else if (Inst->isInsertSubreg()) { DstReg = Inst->getOperand(0).getReg(); SrcReg = Inst->getOperand(2).getReg(); if (Inst->getOperand(1).isUndef()) isInsUndef = true; } else if (Inst->isInsertSubreg() || Inst->isSubregToReg()) { DstReg = Inst->getOperand(0).getReg(); SrcReg = Inst->getOperand(2).getReg(); } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) continue; bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); if (isInsUndef || (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())) ImpDefCopies.push_back(CopyRec(Inst, 0)); else if (SrcIsPhys || DstIsPhys) PhysCopies.push_back(CopyRec(Inst, 0)); else VirtCopies.push_back(CopyRec(Inst, 0)); } // Try coalescing implicit copies and insert_subreg first, // followed by copies to / from physical registers, then finally copies // from virtual registers to virtual registers. for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) { CopyRec &TheCopy = ImpDefCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) { CopyRec &TheCopy = PhysCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) { CopyRec &TheCopy = VirtCopies[i]; bool Again = false; if (!JoinCopy(TheCopy, Again)) if (Again) TryAgain.push_back(TheCopy); } } void SimpleRegisterCoalescing::joinIntervals() { DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); std::vector TryAgainList; if (loopInfo->empty()) { // If there are no loops in the function, join intervals in function order. for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) CopyCoalesceInMBB(I, TryAgainList); } else { // Otherwise, join intervals in inner loops before other intervals. // Unfortunately we can't just iterate over loop hierarchy here because // there may be more MBB's than BB's. Collect MBB's for sorting. // Join intervals in the function prolog first. We want to join physical // registers with virtual registers before the intervals got too long. std::vector > MBBs; for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){ MachineBasicBlock *MBB = I; MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I)); } // Sort by loop depth. std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); // Finally, join intervals in loop nest order. for (unsigned i = 0, e = MBBs.size(); i != e; ++i) CopyCoalesceInMBB(MBBs[i].second, TryAgainList); } // Joining intervals can allow other intervals to be joined. Iteratively join // until we make no progress. bool ProgressMade = true; while (ProgressMade) { ProgressMade = false; for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { CopyRec &TheCopy = TryAgainList[i]; if (!TheCopy.MI) continue; bool Again = false; bool Success = JoinCopy(TheCopy, Again); if (Success || !Again) { TheCopy.MI = 0; // Mark this one as done. ProgressMade = true; } } } } /// Return true if the two specified registers belong to different register /// classes. The registers may be either phys or virt regs. bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA, unsigned RegB) const { // Get the register classes for the first reg. if (TargetRegisterInfo::isPhysicalRegister(RegA)) { assert(TargetRegisterInfo::isVirtualRegister(RegB) && "Shouldn't consider two physregs!"); return !mri_->getRegClass(RegB)->contains(RegA); } // Compare against the regclass for the second reg. const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA); if (TargetRegisterInfo::isVirtualRegister(RegB)) { const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB); return RegClassA != RegClassB; } return !RegClassA->contains(RegB); } /// lastRegisterUse - Returns the last (non-debug) use of the specific register /// between cycles Start and End or NULL if there are no uses. MachineOperand * SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start, SlotIndex End, unsigned Reg, SlotIndex &UseIdx) const{ UseIdx = SlotIndex(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { MachineOperand *LastUse = NULL; for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg), E = mri_->use_nodbg_end(); I != E; ++I) { MachineOperand &Use = I.getOperand(); MachineInstr *UseMI = Use.getParent(); unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) && SrcReg == DstReg && SrcSubIdx == DstSubIdx) // Ignore identity copies. continue; SlotIndex Idx = li_->getInstructionIndex(UseMI); // FIXME: Should this be Idx != UseIdx? SlotIndex() will return something // that compares higher than any other interval. if (Idx >= Start && Idx < End && Idx >= UseIdx) { LastUse = &Use; UseIdx = Idx.getUseIndex(); } } return LastUse; } SlotIndex s = Start; SlotIndex e = End.getPrevSlot().getBaseIndex(); while (e >= s) { // Skip deleted instructions MachineInstr *MI = li_->getInstructionFromIndex(e); while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) { e = e.getPrevIndex(); MI = li_->getInstructionFromIndex(e); } if (e < s || MI == NULL) return NULL; // Ignore identity copies. unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) && SrcReg == DstReg && SrcSubIdx == DstSubIdx)) for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { MachineOperand &Use = MI->getOperand(i); if (Use.isReg() && Use.isUse() && Use.getReg() && tri_->regsOverlap(Use.getReg(), Reg)) { UseIdx = e.getUseIndex(); return &Use; } } e = e.getPrevIndex(); } return NULL; } void SimpleRegisterCoalescing::releaseMemory() { JoinedCopies.clear(); ReMatCopies.clear(); ReMatDefs.clear(); } bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; mri_ = &fn.getRegInfo(); tm_ = &fn.getTarget(); tri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); li_ = &getAnalysis(); AA = &getAnalysis(); loopInfo = &getAnalysis(); DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'); allocatableRegs_ = tri_->getAllocatableSet(fn); for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(), E = tri_->regclass_end(); I != E; ++I) allocatableRCRegs_.insert(std::make_pair(*I, tri_->getAllocatableSet(fn, *I))); // Join (coalesce) intervals if requested. if (EnableJoining) { joinIntervals(); DEBUG({ dbgs() << "********** INTERVALS POST JOINING **********\n"; for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){ I->second->print(dbgs(), tri_); dbgs() << "\n"; } }); } // Perform a final pass over the instructions and compute spill weights // and remove identity moves. SmallVector DeadDefs; for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); mii != mie; ) { MachineInstr *MI = mii; unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; if (JoinedCopies.count(MI)) { // Delete all coalesced copies. bool DoDelete = true; if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) { assert((MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg()) && "Unrecognized copy instruction"); DstReg = MI->getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(DstReg)) // Do not delete extract_subreg, insert_subreg of physical // registers unless the definition is dead. e.g. // %DO = INSERT_SUBREG %D0, %S0, 1 // or else the scavenger may complain. LowerSubregs will // delete them later. DoDelete = false; } if (MI->allDefsAreDead()) { LiveInterval &li = li_->getInterval(DstReg); if (!ShortenDeadCopySrcLiveRange(li, MI)) ShortenDeadCopyLiveRange(li, MI); DoDelete = true; } if (!DoDelete) mii = llvm::next(mii); else { li_->RemoveMachineInstrFromMaps(MI); mii = mbbi->erase(mii); ++numPeep; } continue; } // Now check if this is a remat'ed def instruction which is now dead. if (ReMatDefs.count(MI)) { bool isDead = true; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) DeadDefs.push_back(Reg); if (MO.isDead()) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg) || !mri_->use_nodbg_empty(Reg)) { isDead = false; break; } } if (isDead) { while (!DeadDefs.empty()) { unsigned DeadDef = DeadDefs.back(); DeadDefs.pop_back(); RemoveDeadDef(li_->getInterval(DeadDef), MI); } li_->RemoveMachineInstrFromMaps(mii); mii = mbbi->erase(mii); continue; } else DeadDefs.clear(); } // If the move will be an identity move delete it bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); if (isMove && SrcReg == DstReg && SrcSubIdx == DstSubIdx) { if (li_->hasInterval(SrcReg)) { LiveInterval &RegInt = li_->getInterval(SrcReg); // If def of this move instruction is dead, remove its live range // from the dstination register's live interval. if (MI->registerDefIsDead(DstReg)) { if (!ShortenDeadCopySrcLiveRange(RegInt, MI)) ShortenDeadCopyLiveRange(RegInt, MI); } } li_->RemoveMachineInstrFromMaps(MI); mii = mbbi->erase(mii); ++numPeep; continue; } ++mii; // Check for now unnecessary kill flags. if (li_->isNotInMIMap(MI)) continue; SlotIndex UseIdx = li_->getInstructionIndex(MI).getUseIndex(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isKill()) continue; unsigned reg = MO.getReg(); if (!reg || !li_->hasInterval(reg)) continue; LiveInterval &LI = li_->getInterval(reg); const LiveRange *LR = LI.getLiveRangeContaining(UseIdx); if (!LR || (!LR->valno->isKill(UseIdx.getDefIndex()) && LR->valno->def != UseIdx.getDefIndex())) MO.setIsKill(false); } } } DEBUG(dump()); return true; } /// print - Implement the dump method. void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const { li_->print(O, m); } RegisterCoalescer* llvm::createSimpleRegisterCoalescer() { return new SimpleRegisterCoalescing(); } // Make sure that anything that uses RegisterCoalescer pulls in this file... DEFINING_FILE_FOR(SimpleRegisterCoalescing)